Development of equation and method for computing the multi-fuel nozzle inner fuel channel temperature depending on the number of heat exchangers
Authors: Altunin K.V. | Published: 18.03.2024 |
Published in issue: #4(769)/2024 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Piston Engines | |
Keywords: multi-fuel injector, hydrocarbon fuel, coolant, temperature |
The paper proposes a method for computing the heat temperature of the multi-fuel injector internal channel walls taking into account the number of heat exchangers. It was found that a decrease in temperature of the nozzle metal wall operating on liquid hydrocarbon fuel could not only inhibit further sedimentation, but also prevent appearance of the carbon-bearing precipitation. Scientific and technical information was analyzed and a patent search was conducted for the multi-fuel injectors. A new formula was obtained for computing the temperature of the multi-fuel injector internal surface depending on the number of heat exchangers, hydrocarbon carbon fuel and coolant mass flow rates, as well as on the other parameters. The new formula was theoretically tested; as a result, it was proven that multi-fuel injectors were more efficient than the single-fuel injectors were, as they were cooling worse and had a shorter resource. Based on the new formula, a new method was developed for computing the temperature of the multi-fuel injector internal channel walls depending on the number of heat exchangers.
EDN: JZYDDI, https://elibrary/jzyddi
References
[1] Khavkin Yu.I. Tsentrobezhnye forsunki [Centrifugal nozzles]. Leningrad, Mashinostroenie Publ., 1976. 168 p. (In Russ.).
[2] Bolshakov G.F. Fiziko-khimicheskie osnovy obrazovaniya osadkov v reaktivnykh toplivakh [Physico-chemical bases of sludge formation in jet fuels]. Leningrad, Khimiya Publ., 1972. 232 p. (In Russ.).
[3] Altunin V.A. Issledovanie osobennostey teplootdachi k uglevodorodnym goryuchim i okhladitelyam v energeticheskikh ustanovkakh mnogorazovogo ispolzovaniya. Kn. 1 [Investigation of heat dissipation peculiarities to hydrocarbon fuels and coolants in reusable power plants. Vol. 1.]. Kazan, KGU im. V.I. Ulyanova-Lenina Publ., 2005. 272 p. (In Russ.).
[4] Yanovskiy L.S., Ivanov V.F., Galimov F.M. et al. Koksootlozheniya v aviatsionnykh i raketnykh dvigatelyakh [Coke deposits in aviation and rocket engines]. Kazan, Abak Publ., 1999. 284 p. (In Russ.).
[5] Altunin K.V. [Ways of improvement of liquid nozzles of aircraft and rocket engines]. Mat. mezhd. molodezh. nauchn. konf. Tupolevskie chteniya. T. 1 [Proc. Int. Youth Conf. Tupolev Readings. Vol. 1]. Kazan, KGTU im. A.N. Tupoleva Publ., 2008, pp. 234–235. (In Russ.).
[6] Ramier S.A., Barve V.V., Thackway R.L. et.al. Multi-functional fuel nozzle with a heat shield. Patent WO 2016024975. Appl. 04.08.2014, publ. 18.02.2016.
[7] Malygina M.V. Numerical investigation multifuel combustion gas turbine combustion chamber module. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2011, no. 3–1, pp. 143–150. (In Russ.).
[8] Murashev P.M. Mnogotoplivnaya forsunka dlya gazoturbinnykh dvigateley i ustanovok [Multi-fuel nozzle for gas turbine engines and installations]. Patent RU 110818. Appl. 29.06.2011, publ. 27.11.2011. (In Russ.).
[9] Burdykin V.D., Kozlov V.G., Kondrashova E.V. Mnogotoplivnaya forsunka [Multifuel nozzle]. Patent RU 166189. Appl. 09.03.2016, publ. 20.11.2016. (In Russ.).
[10] Malchuk V.I., Shatrov M.G., Kudryashov B.A. et al. Forsunka dlya podachi dvukh vidov topliva v dizelnyy dvigatel [Nozzle to feed two fuels into diesel]. Patent RU 2541674. Appl. 31.12.2013, publ. 20.02.2015. (In Russ.).
[11] Stasyuk A.V., Kalashnik N.N., Priladyshev D.Yu. et al. Forsunka dvukhtoplivnaya «gaz plyus zhidkoe toplivo» [Double fuel atomiser "gas plus fuel oil"]. Patent RU 2578785. Appl. 27.10.2014, publ. 27.03.2016. (In Russ.).
[12] Wang R., Zhang L., He Y. et al. Multi-fuel nozzle for micro gas turbine. Patent CN 110822481. Appl. 24.05.2019, publ. 21.02.2020.
[13] Fox T.A., Terdalkar S., Bartley R.H. et al. Dual stage multi-fuel nozzle including a flow-separating wall with a slip-fit joint background. Patent WO 2017018992. Appl. 24.07.2015, publ. 02.02.2017.
[14] Woerz U., Wu J. Improved multi-fuel injection nozzle. Patent PL 2742290. Appl. 09.07.2012, publ. 31.03.2016.
[15] Wei B. Multi-fuel combustion nozzle with local aerating and combusting supporting functions realized by using fuel oil, fuel gas and enriched oxygen. Patent CN 202303393. Appl. 14.09.2011, publ. 04.07.2012.
[16] Zhang J., Hu B. A kind of multi fuel nozzle, fuel spray system and its turbogenerator. Patent CN 107166435. Appl. 07.07.2017, publ. 15.09.2017.
[17] Altunin K.V. Development of a technique for calculating the temperature of the multi-fuel nozzle inner wall in order to prevent sedimentation and overheating. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 6, pp. 37–47, doi: http://dx.doi.org/10.18698/0536-1044-2021-6-37-47 (in Russ.).
[18] Altunin K.V. Development of a method for temperature calculation of the multi-fuel nozzle inner wall based on heat flux. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 12, doi: http://dx.doi.org/10.18698/2308-6033-2022-12-2238 (in Russ.).
[19] Cengel Y.A. Heat transfer. McGraw-Hill, 2007. 901 p.
[20] Bologa M.K., Semenov K.N., Burbulya Yu.T. Teploobmen pri vynuzhdennom dvizhenii zhidkostey v elektricheskom pole [Heat transfer during forced motion of liquids in an electric field]. V: Teplo- i massoperenos. T. 1, ch. 1 [In: Heat and mass transfer. Vol. 1, p. 1]. Minsk, In-t teplo- i massoobmena AN BSSR Publ., 1972, pp. 307–311. (In Russ.).