Determination of the optimum parameters of a geothermal steam turbine installation
Authors: Romanenko A.V., Zhinov A.A. | Published: 03.05.2024 |
Published in issue: #5(770)/2024 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Piston Engines | |
Keywords: steam turbine installation, geothermal energy, geothermal power plant, thermal efficiency, parameter optimization |
The paper proposes a method for determining optimal parameters of the steam turbine installation cycle of a geothermal power plant, taking into account the well characteristics of a specific geothermal field. It considers the single-circuit thermal circuits of a steam turbine installation in the absence and presence of the intermediate steam input into a turbine. The geothermal installation thermal efficiency is analyzed at various values of steam pressure at the input to the turbine and condenser. It is shown that, providing stable operation of the well increases the initial steam pressure in the steam turbine installation cycle and has a beneficial effect on the geothermal power plant appearance. For the single-circuit schemes, the initial steam pressure is determined by the turbine maximum specific work obtained taking into account alteration in the steam pressure at the wellhead, which depends on its flow rate. It was established that for a steam turbine installation without intermediate steam input into the turbine of the geothermal power plant of the Mutnovskoye field, the optimal initial pressure of the steam-water working fluid was 6–8 atm.
EDN: WJBPNX, https://elibrary/wjbpnx
References
[1] Boguslavskiy E.I. Osvoenie teplovoy energii nedr [Development of subsoil heat energy]. Sankt-Petersburg, Naukoemkie tekhnologii Publ., 2020. 435 p. (In Russ.).
[2] Alkhasov A.B. A way of using geothermal heat more efficiently. Teploenergetika, 2003, no. 3, pp. 52–54. (In Russ.). (Eng. version: Therm. Eng., 2003, vol. 50, no. 3, pp. 230–233.)
[3] Alekseenko S.V., Borodulin V.Yu., Gnatus N.A. et al. Problems and outlooks for petrothermal power engineering (review). Teplofizika i aeromekhanika, 2016, vol. 23, no. 1, pp. 1–16. (In Russ.). (Eng. version: Thermophys. Aeromech., 2016, vol. 23, no. 1, pp. 1–16, doi: https://doi.org/10.1134/S0869864316010017)
[4] Tomarov G.V., Nikolskiy A.I., Semenov V.N. et al. Trends and prospects of development of geothermal power engineering. Teploenergetika, 2012, no. 11, pp. 26–35. (In Russ.). (Eng. version: Therm. Eng., 2012, vol. 59, no. 11, pp. 831–840, doi: https://doi.org/10.1134/S0040601512110146)
[5] Alkhasov A.B. Vozobnovlyaemaya energetika [Renewable energy]. Moscow, Fizmalit Publ., 2012. 256 p. (In Russ.).
[6] Berman E.R. Geothermal energy. Noyes Data Corporation, 1975. 336 p. (Russ. ed.: Geotermalnaya energiya, Moscow, Mir Publ., 1978. 416 p.)
[7] Lund J.W., Boyd T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, vol. 60, pp. 66–93, doi: https://doi.org/10.1016/j.geothermics.2015.11.004
[8] DiPippo R. Geothermal power plants: evolution and performance assessments. Geothermics, 2015, vol. 53, pp. 291–307, doi: https://doi.org/10.1016/j.geothermics.2014.07.005
[9] Povarov O.A., Tomarov G.V., Nikolskiy A.I. et al. State-of-the-art geothermal energy technologies and their efficiency. Teploenergetika, 2004, no. 6, pp. 2–12. (In Russ.). (Eng. version: Therm. Eng., 2004, vol. 51, no. 6, pp. 425–435.)
[10] Tomarov G.V., Shipkov A.A. Modern geothermal power: GeoPP with geothermal steam turbines. Teploenergetika, 2017, no. 3, pp. 38–50, doi: https://doi.org/10.1134/S0040363617030080 (In Russ.). (Eng. version: Therm. Eng., 2017, vol. 64, no. 3, pp. 190–200, doi: https://doi.org/10.1134/S0040601517030089)
[11] Shulyupin A.N., Chermoshentseva A.A. Justification of the peculiarities of a steam-water geothermal well operation mode within the framework of a new stability theory. GEOENERGY. Mat. III Mezhd. nauch.-prakt. konf. [GEOENERGY. Proc. III Int. Sci.-Pract. Conf.]. Groznyy, GGNTU Publ., 2017, pp. 21–29. (In Russ.).
[12] Shulyupin A.N., Chernev I.I. Some methods for reducing of steam deficit at geothermal power plants exploitation: experience of Kamchatka (Russia). Geotherm. Energy, 2015, vol. 3, art. 23, doi: https://doi.org/10.1186/s40517-015-0042-4
[13] Britvin O.V., Povarov O.V. et al. The Mutnovsk geothermal power complex in Kamchatka. Teploenergetika, 2001, no. 2, pp. 4–10. (In Russ.). (Eng. version: Therm. Eng., 2001, vol. 48, no. 2, pp. 89–95.)
[14] Manushin E.A., Biryukov V.V. Geothermal power plants steam turbine with binary cycle for geothermal fields of Kamchatka. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2011, no. 9. URL: http://engineering-science.ru/doc/220323.html (in Russ.).
[15] Alkhasov A.B. Utilisation of geothermal energy for electricity generation. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2010, no. 1, pp. 59–72. (In Russ.).
[16] Povarov O.A., Sugrobov V.M. et al. [Study of the possibility of extracting thermal energy of the magmatic centre of Avacha volcano by drilling deep boreholes: scientific publication]. V: Proekt nauchnogo bureniya na Mutnovskom vulkane — issledovanie svyazi magmaticheskoy i gidrotermalnykh system [In: Scientific drilling project at Mutnovsky volcano — study of the connection between magmatic and hydrothermal systems]. Petropavlovsk-Kamchatskiy, Kamchatskiy pechatnyy dvor Publ., 2006, pp. 79–82. (In Russ.).
[17] Franco A., Villani M. Optimal design of binary cycle power plants for water-dominated, mediumtemperature geothermal fields. Geothermics, 2009, vol. 38, no. 4, pp. 379–391, doi: https://doi.org/10.1016/j.geothermics.2009.08.001
[18] Zarrouk S.J., Moon H. Efficiency of geothermal power plants: a worldwide review. Geothermics, 2014, vol. 51, pp. 142–153, doi: https://doi.org/10.1016/j.geothermics.2013.11.001
[19] Saadatfar B., Fakhrai R., Fransson T. Waste heat recovery Organic Rankine cycles in sustainable energy conversion: a state-of-the-art review. JMES, 2013, vol. 1, no. 1, pp. 161–188.
[20] Fedorov V.A., Milman O.O., Ananyev P.A. et al. Results of experimental and computational analysis of air flow in the circle channels of the air-cooled condensers of steam power plants. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 5, pp. 87–105, doi: http://dx.doi.org/10.18698/0236-3941-2015-5-87-105 (in Russ.).
[21] Zhinov A.A., Shevelev D.V. Research the wind effect on the fans performance of air-cooled condenser for geothermal power station. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 1, pp. 108–118, doi: http://dx.doi.org/10.18698/0236-3941-2015-1-108-118 (in Russ.).