Analytical analysis of thermal schemes of waste steam and gas turbine plants, used to achieve carbon neutrality
Authors: Bowen Gong, Izbiakov N.S., Barskov V.V., Rassokhin V.A. | Published: 12.08.2024 |
Published in issue: #8(773)/2024 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Piston Engines | |
Keywords: supercritical carbon dioxide, heat recovery, Brayton cycle options, carbon neutrality, electricity generation, turbine |
Greenhouse gas emission poses a serious threat, as it causes global warming and air pollution. There are ways to reduce its impact on the environment that include compensation for the greenhouse gas emission and introduction of the heat recovery units. The paper considers steam turbine plants using the Rankine cycle and the organic Rankine cycle, as well as the gas turbine plant using the Brayton cycle with the supercritical carbon dioxide. The latter appears to be the most effective and promising option. The research results established that the cycle with recompression and intermediate cooling was providing the plant highest efficiency. Economic aspect importance in selecting an optimal solution was noted. To make a decision in choosing a plant, it is necessary to compute its economic efficiency, implementation cost and operation cost.
EDN: RYBCSM, https://elibrary/rybcsm
References
[1] Xu Y., Xue Y., Cai W. et al. Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery. Appl. Therm. Eng., 2023, vol. 225, art. 120156, doi: https://doi.org/10.1016/j.applthermaleng.2023.120156
[2] Vybrosy CO2 ot szhiganiya topliva [CO2 emissions from fuel combustion]. energystats.enerdata.net: website. URL: https://energystats.enerdata.net/co2/emissions-co2-data-from-fuel-combustion.html (accessed: 17.09.2023). (In Russ.).
[3] Ravi R., Pachamuthu S., Kasinathan P. Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger. Energy, 2020, vol. 200, art. 117489, doi: https://doi.org/10.1016/j.energy.2020.117489
[4] Chto takoe uglerodnaya neytralnost? Mir mozhet priyti k ney? [What is carbon neutrality? Can the world come to it?] sberegiplanetu.ru: website. URL: https://sberegiplanetu.ru/publications/chto-takoe-uglerodnaia-neitralnost-mir-mozhet-priiti-k-nei (accessed: 17.09.2023). (In Russ.).
[5] Mery po borbe s izmeneniem klimata [Measures to combat climate change]. un.org: website. URL: https://www.un.org/ru/climatechange/paris-agreement (accessed: 06.11.2023). (In Russ.).
[6] Jouhara H., Khordehgah N., Almahmoud S. et al. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog., 2018, vol. 6, pp. 268–289, doi: https://doi.org/10.1016/j.tsep.2018.04.017
[7] Inayat A. Current progress of process integration for waste heat recovery in steel and iron industries. Fuel, 2023, vol. 338, art. 127237, doi: https://doi.org/10.1016/j.fuel.2022.127237
[8] Casi Á., Araiz M., Catalán L. et al. Thermoelectric heat recovery in a real industry: from laboratory optimization to reality. Appl. Therm. Eng., 2021, vol. 184, art. 116275, doi: https://doi.org/10.1016/j.applthermaleng.2020.116275
[9] Pashchenko D. Performance evaluation of a combined power generation system integrated with thermochemical exhaust heat recuperation based on steam methane reforming. Int. J. Hydrogen Energy, 2023, vol. 48, no. 15, pp. 5823–5835, doi: https://doi.org/10.1016/j.ijhydene.2022.11.186
[10] Macchi E. Theoretical basis of the Organic Rankine Cycle. In: Organic Rankine Cycle (ORC) power systems. Woodhead, 2017, pp. 3–24, doi: https://doi.org/10.1016/B978-0-08-100510-1.00001-6
[11] Dostal V., Hejzlar P., Driscoll M.J. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors. Nucl. Technol., 2006, vol. 154, no. 3, pp. 265–282, doi: https://doi.org/10.13182/NT154-265
[12] Feher E.G. The supercritical thermodynamic power cycle. Energy Convers., 1968, vol. 8, no. 2, pp. 85–90, doi: https://doi.org/10.1016/0013-7480(68)90105-8
[13] Li Y., Lin Y., He Y. et al. Part-load performance analysis of a dual-recuperated gas turbine combined cycle system. Energy, 2023, vol. 269, art. 126744, doi: https://doi.org/10.1016/j.energy.2023.126744
[14] Woudstra N., Woudstra T., Pirone A. et al. Thermodynamic evaluation of combined cycle plants. Energy Convers. Manag., 2010, vol. 51, no. 5, pp. 1099–1110, doi: https://doi.org/10.1016/j.enconman.2009.12.016
[15] ORC solutions for industry. enertime.com: website. URL: https://www.enertime.com/assets/documents/fiche-orc_ind_7-2023_en-1691435487.pdf (accessed: 17.09.2023).
[16] Cakici D.M., Erdogan A., Colpan C.O. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy, 2017, vol. 120, pp. 306–319, doi: https://doi.org/10.1016/j.energy.2016.11.083
[17] Bidkar R.A., Mann A., Singh R. et al. Conceptual designs of 50MWe and 450MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1. Cycle and turbine. Int. Symp. Supercritical CO2 Power Cycles, 2016, vol. 5, pp. 1–18.
[18] Schmitt J., Amos D., Custer C. et al. Study of a supercritical CO2 turbine with TIT of 1350 K for Brayton cycle with 100 MW class output: aerodynamic analysis of stage 1 vane. Int. Symp. Supercritical CO2 Power Cycles, 2014, vol. 4, paper GT2014-27214, doi: https://doi.org/10.1115/GT2014-27214
[19] Vitale Di Maio D., Boccitto A., Caruso G. Supercritical carbon dioxide applications for energy conversion systems. Energy Procedia, 2015, vol. 82, pp. 819–824, doi: https://doi.org/10.1016/j.egypro.2015.11.818
[20] Moisseytsev A., Sienicki J.J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl. Eng. Des., 2009, vol. 239, no. 7, pp. 1362–1371, doi: https://doi.org/10.1016/j.nucengdes.2009.03.017
[21] Cho S.K., Kim M.S., Baik S. investigation of the bottoming cycle for high efficiency combined cycle gas turbine system with supercritical carbon dioxide power cycle. ASME Turbo Expo, 2015, art. 43077, doi: https://doi.org/10.1115/GT2015-43077
[22] Stepanek J., Syblik J., Entler S. Axial SCO2 high-performance turbines parametric design. Energy Convers. Manag., 2022, vol. 274, art. 116418, doi: https://doi.org/10.1016/j.enconman.2022.116418
[23] Gong B., Rassokhin V.V., Barskov V.V. et al. Design principles of low and medium power turbine units, fuelled by supercritical carbon dioxide. Gazovaya promyshlennost [Gas Industry], 2023, no. 11, pp. 42–57. (In Russ.).
[24] Ahn Y., Bae S.J., Kim M.S. et al. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application. Transactions of the Korean Nuclear Society Autumn Meeting, 2014. 5 p.
[25] Marchionni M., Bianchi G., Tassou S.A. Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy, 2018, vol. 148, pp. 1140–1152, doi: https://doi.org/10.1016/j.energy.2018.02.005
[26] Kim M.S., Ahn Y., Kim B. et al. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle. Energy, 2016, vol. 111, pp. 893–909, doi: http://dx.doi.org/10.1016/j.energy.2016.06.014
[27] Pham H.S., Alpy N., Ferrasse J.H. et al. Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor. Energy, 2015, vol. 87, pp. 412–424, doi: https://doi.org/10.1016/j.energy.2015.05.022
[28] Yun S., Zhang D., Li X. et al. Design, optimization and thermodynamic analysis of SCO2 Brayton cycle system for FHR. Prog. Nucl. Energy, 2023, vol. 157, art. 104593, doi: https://doi.org/10.1016/j.pnucene.2023.104593