Selection of Optimal Gas-Dynamic Parameters of Radial-Axial Turbines in Their Joint Operation with Reciprocating Internal Combustion Engines
Authors: Rusakov A.N. | Published: 22.05.2021 |
Published in issue: #6(735)/2021 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Combination Turbine Plants | |
Keywords: aerodynamic profile, pulse turbine, turbine efficiency, optimal diameter, impeller, radial-axial (centripetal) turbine |
The study of radial-axial (centripetal) turbines is important for science and technology. They are widely used in the refrigeration industry, internal combustion engines, and power engineering, both in the form of auxiliary units and in autonomous power units. The article offers a method for selecting the gas-dynamic parameters of the centripetal turbine in order to obtain the highest efficiency and the best size of the turbine. The increased manufacturability of the turbine is provided due to the absence of a straightener at the outlet of the impeller and the use of straight blades in the impeller. The dependence of the efficiency of a centripetal turbine on the profiles of the blades and the radial dimensions of the nozzle apparatus and the impeller, as well as on the length of the impeller blades is investigated. Considering the recommended optimal parameters, the calculation of a pulsed centripetal turbine operating in conjunction with a four-stroke piston internal combustion engine is performed.
References
[1] Rusakov A.N. A computational study of gas-dynamic parameters of radial-axial turbines and their joint operation with piston engines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 8, pp. 44–50 (in Russ.), doi: http://dx.doi.org/10.18698/0536-1044-2020-8-44-50
[2] Meherwan M.P. Gas turbine engineering handbook. Houston, Butterworth-Heinemann, 2001. 799 p.
[3] Cohen H., Rogers G.F.C., Saravanamuttoo H.I.H. Gas turbine theory. Longman, Harlow, T.J. Press, 1996. 442 p.
[4] Samarskiy A.A. Vvedenie v chislennye metody [Introduction to numerical methods]. Sankt-Peterburg, Lan’ Publ., 2005. 271 p.
[5] Kostyuk A.G., Frolov V.V., Bulkin A.E., et al. Parovye i gazovye turbiny dlya elektrostantsiy [Steam and gas turbines for power plants]. Moscow, MEI Publ., 2016. 557 p.
[6] Motorin A.V., Raspopov I.V., Fursov I.D. Parovye turbiny. T. 1 [Steam turbines. Vol. 1]. Barnaul, AltGTU Publ., 2004. 127 p.
[7] Li P.-Y., Gu C.-W., Song Y. A new optimization method for centrifugal compressors based on 1D calculations and analyses. Energies, 2015, vol. 8, no. 5, pp. 4317–4334, doi: http://dx.doi.org/10.3390/en8054317
[8] Takao M., Setoguchi T. Air turbines for wave energy conversion. Int. J. Rotating Mach., 2012, vol. 2012, art. 717398, doi: http://dx.doi.org/10.1155/2012/717398
[9] Mitrokhin V.T. Vybor parametrov i raschet radial’noy tsentrostremitel’noy turbiny na statsionarnykh i perekhodnykh rezhimakh [Parameter selection and calculation of a centripetal radial turbine in stationary and transient conditions]. Moscow, Mashinostroenie Publ., 1974. 228 p.
[10] Sherstyuk A.N., Zaryankin A.E. Radial’no-osevye turbiny maloy moshchnosti [Low power radial-axial turbines]. Moscow, Mashinostroenie Publ., 1976. 207 p.
[11] Tarnawski P., Ostapski W. Pulse powered turbine engine concept — numerical analysis of influence of different valve timing concepts on thermodynamic performance. Bull. Pol. Acad. Sci. Tech. Sci., 2018, vol. 66, no. 3, pp. 373–382, doi: http://dx.doi.org/10.24425/123444
[12] Dovgyallo A.I., Shimanov A.A. Possibility of using a bi-directional impulse turbine in a thermo-acoustic engine. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo gosudarstvennogo universiteta [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2015, vol. 14, no. 1, c. 132–138 (in Russ.), doi:: https://doi.org/10.18287/1998-6629-2015-14-1-132-138
[13] Takao M., Fujioka Y., Homma H., et al. Experimental study of a radial turbine using pitch-controlled guide vanes for wave power conversion. Int. J. Rotating Mach., 2006, vol. 2006, no. 017379, doi:: http://dx.doi.org/10.1155/IJRM/2006/17379
[14] Orlin A.S., Kruglov M.G., eds. Teoriya porshnevykh i kombinirovannykh dvigateley [Theory of piston and combined engines]. Moscow, Mashinostroenie Publ., 1983. 372 p.
[15] Rangwala A.S. Turbo-machinery dynamics. McGraw-Hill, 2005. 535 p.