Selecting the Centrifugal Compressor Impeller Blade Height During Preliminary Designing
Authors: Solovyeva O.A., Galerkin Y.B., Drozdov A.A., Soldatova K.V., Rekstin A.F., Brodnev P.N. | Published: 11.03.2022 |
Published in issue: #3(744)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: centrifugal compressor, impeller, mathematical model, loss coefficient, velocity diagram, preliminary designing |
In the preliminary designing of industrial centrifugal compressors using the universal modeling method, the relative blade heights at the exit of the impeller of a centrifugal compressor are determined only by the dimensionless compressor performance parameter— a conditional flow rate in the design mode. The second main design parameter, the theoretical head factor, is not taken into account. This rule is formulated on the basis that the relative height of the blades has relatively little effect on the slowing down the flow on the suction side of the blades, where separation can occur. The article considers another negative aspect of the large blade height. Increasing the height of the blades reduces their exit angle at a given theoretical head coefficient. The rotation of the flow by the blades decreases (which helps to reduce losses), but their length increases. With a larger area of the blades, friction losses increase. The computational research was carried out on the example of impellers with a moderate flow rate = 0.0518 in the theoretical head coefficient range = 0.475–0.70. Mathematical models of the Universal Modeling Method and calculations of an inviscid quasi-three-dimensional flow were selected as a tool for research. The results show that the existing primary design methodology can be refined.
References
[1] Von Eckert B. Axialkompressoren und Radialkompressoren. Anwendung, Theorie, Berechnung. Berlin, Springer, 1953. 677 p. (Russ. ed.: Osevye i tsentrobezhnye kompressory. Primenenie, teoriya, raschet. Moscow, Mashgiz Publ. 1959. 680 p.)
[2] Ris V.F. Tsentrobezhnye kompressornye mashiny [Centrifugal compressor pumps]. Leningrad, Mashinostroenie Publ., 1981. 351 p. (In Russ.).
[3] Tuliszka E. Sprezarki, dmuchawy i wentylatory. Wydawnictwa Naukowo-Techniczne, 1969. 784 p. (In Russ.).
[4] Japikse D. Centrifugal compressor design and performance. Concepts ETI, 1996. 387 p.
[5] Kampsti N. Aerodinamika kompressorov [Compressor aerodynamics]. Moscow, Mir Publ., 2000. 688 p. (In Russ.).
[6] Aungier R.H. Centrifugal compressors: a strategy for aerodynamic design and analysis. New York, ASME, 2000. 320 p.
[7] Podobuev Yu.S., Seleznev K.P. Teoriya i raschet osevykh i tsentrobezhnykh kompressorov [Theory and calculation of axial and centrifugal compressors]. Moscow-Leningrad, Mashgiz Publ., 1957. 392 p. (In Russ.).
[8] Ris V.F. Tsentrobezhnye kompressornye mashiny [Centrifugal compressor machines]. Leningrad, Mashinostroenie Publ., 1964. 336 p. (In Russ.).
[9] Livshits S.P. Aerodinamika tsentrobezhnykh kompressornykh mashin [Aerodynamics of centrifugal compressor machines]. Moscow-Leningrad, Mashinostroenie Publ., 1966. 340 p. (In Russ.).
[10] Den G.N. Proektirovanie protochnoy chasti tsentrobezhnykh kompressorov [Design of centrifugal compressor flowpath]. Leningrad, Mashinostroenie Publ., 1980. 230 p. (In Russ.).
[11] Shnepp V.B. Konstruktsiya i raschet tsentrobezhnykh kompressornykh mashin [Design and calculation of centrifugal compressor machines]. Moscow, Mashinostroenie Publ., 1995. 240 p. (In Russ.).
[12] Khisameev I.G., ed. Proektirovanie i ekspluatatsiya promyshlennykh tsentrobezhnykh kompressorov [Design and exploitation of industrial centrifugal compressors]. Kazan’, Fen Publ., 2012. 671 p. (In Russ.).
[13] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnye kompressory [Centrifugal compressors]. Leningrad, Mashinostroenie Publ., 1982. 271 p. (In Russ.).
[14] Seleznev K.P., Galerkin Yu.B., Anisimov S.A., et al. Teoriya i raschet turbokompressorov [Theory and calculation of compressors]. Leningrad, Mashinostroenie Publ., 1986. 392 p. (In Russ.).
[15] Galerkin Yu.B. Turbokompressory. Rabochiy protsess, raschet i proektirovanie protochnoy chasti [Turbo compressors. Working process, calculation and design of a flowpath]. Moscow, KKhT Publ., 2010. 596 p. (In Russ.).
[16] Galerkin Yu.B., Rekstin A.F., Drozdov A.A., et al. [End-to-end optimum system for gas dynamic design of industrial centrifugal compressors]. Nauchnye osnovy, praktika primeneniya. XVIII Mezhd. nauchn.-tekh. konf. [Scientific foundations, application practice. XVIII Int. Sci.-Tech. Conf.]. Kazan’, 2019. pp. 15–46. (In Russ.).
[17] Borovkov A.I., Voinov I.B., Galerkin Yu.B., et al. Issues of gas dynamic characteristics modeling on the example of the centrifugal compressor model stage. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2018, vol. 24, no. 2, pp. 44–57, doi: https://doi.org/10.18721/JEST.240204 (in Russ.).
[18] Borovkov A.I., Voinov I.B., Rekstin A.F., et al. Modeling of characteristics of two-stage centrifugal gas compressor unit. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2019, t. 25, no. 2, pp. 87–104, doi: https://doi.org/10.18721/JEST.25207 (in Russ.).
[19] Borovkov A.I., Voinov I.B., Nikitin M.A., et al. Performance modeling for a single-stage pipeline centrifugal compressor. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2018, t. 24, no. 3, pp. 153–175, doi: https://doi.org/10.18721/JEST.240313 (in Russ.).
[20] Kabalyk K., Kryllowicz W. Numerical modeling of the performance of a centrifugal compressor impeller with low inlet flow coefficient. Trans. Inst. Fluid-Flow Mach., 2016, no. 131, pp. 97–109.
[21] Kryllowicz W., Swider P., Kozanecki Z., et al. Technical and aerodynamical aspects of a high pressure synthesis gas turbocompressor modernization. Proc. ETC12, 2017, paper ETC2017-171, doi: https://doi.org/10.29008/ETC2017-171
[22] Marechale R., Ji M., Cave M. Experimental and numerical investigation of labyrinth seal clearance impact on centrifugal impeller performance. Proc. ASME Turbo Expo, 2015, paper GT2015-43778, doi: https://doi.org/10.1115/GT2015-43778
[23] Matas R., Syka T., Lunacek O. Numerical and experimental modelling of the centrifugal compressor stage — setting the model of impellers with 2D blades. EPJ Web Conf., 2017, vol. 143, art. 02073, doi: https://doi.org/10.1051/epjconf/201714302073
[24] Hazby H., Casey M., Robinson C., et al. The design of a family of process compressor stages. Proc. 12th ETC12, 2017, paper ETC2017-134, doi: https://doi.org/10.29008/ETC2017-134
[25] Matas R., Syka T., Hurda L. Experimental investigation and numerical modelling of 3D radial compressor stage and influence of the technological holes on the working characteristics. EPJ Web Conf., 2018, vol. 180, art. 02060, doi: https://doi.org/10.1051/epjconf/201818002060
[26] Syka T., Matas R., Lunacek O. Numerical and experimental modelling of the radial compressor stage. AIP Conf. Proc., 2016, vol. 1745, no. 1, art. 020059, doi: https://doi.org/10.1063/1.4953753
[27] Galerkin Yu.B., ed. Trudy nauchnoy shkoly kompressorostroeniya SPbGPU [Proceedings of SPbSPU Scientific School of Compressor Engineering]. Moscow, KKhT Publ., 2000. 443 p. (In Russ.).
[28] Galerkin Yu.B., ed. Trudy nauchnoy shkoly kompressorostroeniya SPbGPU [Proceedings of SPbSPU Scientific School of Compressor Engineering]. Moscow, KKhT Publ., 2005. 496 p. (In Russ.).
[29] Galerkin Yu.B., ed. Trudy nauchnoy shkoly kompressorostroeniya SPbGPU [Proceedings of SPbSPU Scientific School of Compressor Engineering]. Moscow, SPbGPU Publ., 2010. 670 p. (In Russ.).
[30] Galerkin Yu.B., Soldatova K.V. Modelirovanie rabochego protsessa promyshlennykh tsentrobezhnykh kompressorov [Working process modelling for industrial centrifugal compressors]. Sankt-Petersburg, Izd-vo Politekhnicheskogo un-ta Publ., 2011. 327 p. (In Russ.).
[31] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. [Development of LPI-SPbSPU Scientific School of Compressor Engineering, results of partnership with compressor manufacturers]. 17 Mezhd. nauch.-tekh. konf. [17 Int. Sci.-Tech. Conf.]. Kazan’, 2017, pp. 19–29. (In Russ.).
[32] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. Verification of new versions of a method of universal modeling of centrifugal compressors by results of experiments. Kompressornaya tekhnika i pnevmatika [Compressors and Pneumatics], 2015, no. 4, pp. 21–31. (In Russ.).
[33] Galerkin Yu.B., Soldatova K.V., Drozdov A.A. Improvement of method to calculate industrial centrifugal compressors performance. Kompressornaya tekhnika i pnevmatika [Compressors and Pneumatics], 2013, no. 8, pp. 24–32. (In Russ.).
[34] Galerkin Yu.B., Drozdov A.A. Gas dynamic performance modeling of centrifugal compressor stages with 3D impellers. Nauchno-tekhnicheskie vedomosti SPbGPU. Nauka i obrazovanie [St. Petersburg State Polytechnical University Journal. Economics], 2014, no. 3, pp. 45–53. (In Russ.).
[35] Galerkin Yu.B., Soldatova K.V. Loading factor performance of a centrifugal compressor impeller. Specific features and way of modeling. Kompressornaya tekhnika i pnevmatika [Compressors and Pneumatics], 2016, no. 1, pp. 24–34. (In Russ.).
[36] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. Alternative method of centrifugal compressor loading factor modeling. Kompressornaya tekhnika i pnevmatika [Compressors and Pneumatics], 2016, no. 6, pp. 11–19. (In Russ.).
[37] Drozdov A.A. Metod proektirovaniya tsentrobezhnykh kompressorov s oseradial’nymi rabochimi kolesami. Diss… kand. tekh. nauk [Design method of centrifugal compressors with axial-radial impeller. KAnd. tech. sci. diss.]. Sankt-Petersburg, SPbPU Publ., 2016. 236 p. (In Russ.).
[38] Galerkin Y., Rekstin A., Soldatova K., et al. Universal modeling method — the instrument for centrifugal compressor gas dynamic design. ASME Gas Turbine India Conf., 2015, paper GTINDIA2015-1202, doi: https://doi.org/10.1115/GTINDIA2015-1202
[39] [38] Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Nauka Publ., 1978. 736 p. (In Russ.).
[40] Lysyakova A.A. Sovershenstvovanie programm rascheta kharakteristik tsentrobezhnykh kompressornykh stupeney s pomoshch’yu obobshchennykh diagramm skorostey obtekaniya lopatok [Improvement of programs for calculation of centrifugal compressor stages using general charts of blades streaming velocity]. Sankt-Petersburg, SPbGPU Publ., 2010. 141 p. (In Russ.).
[41] Rekstin A.F., Bakaev B.V. Variant calculations for industrial centrifugal compressors based on simplified mathematical model. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2018, vol. 24, no. 4, pp. 24–38, doi: https://doi.org/10.18721/JEST.24403 (in Russ.).
[42] Rekstin A.F., Galerkin Yu.B. Low-flow rate centrifugal compressor stages primary design specificity. Vestnik PNIPU [Bulletin PNRPU], 2018, vol., 20, no. 2, pp. 43–54, doi: https://doi.org/10.15593/2224-9877/2018.2.06 (in Russ.).
[43] Rekstin A.F., Galerkin Yu.B. Improving method for primary design of centrifugal compressor impellers. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2019, vol. 25, no. 2, pp. 105–117, doi: https://doi.org/10.18721/JEST.25208 (in Russ.).