Mathematical Model of Screw Vacuum Pump Working Process
Authors: Laskin A.A., Yakupov R.R., Raykov A.A., Mustafin T.N., Salikeev S.I., Burmistrov A.V. | Published: 01.08.2022 |
Published in issue: #8(749)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: screw vacuum pump, mathematical model, working chamber, gas backflow, triangular slot |
The screw vacuum pump combines high performance, low ultimate pressure and ability to create an oil-free vacuum. The calculation of the pump characteristics can be performed using mathematical modeling. The article considers main stages of creating a mathematical model: constructing the geometry of the rotors, calculating the dependence of the working cavity volume and the area of the suction and discharge windows on the angle of rotor rotation, determining the main directions of gas flows, calculating the dependence of pressure and temperature on the angle of rotor rotation.
The thermodynamic model of the working process is based on gas state differential equations describing the laws of mass and energy conservation in control volumes, taking account of heat transfer and overflows. The classification of slotted channels in a screw pump is given, and a method for calculating gas backflows through them is proposed. The calculated dependences of the speed of action on the inlet pressure for various rotor speeds are presented. The developed model can be used for calculating the pumping characteristics of a screw vacuum pump at the design stage.
References
[1] Khablanyan M.Kh., Saksaganskiy G.L., Burmistrov A.V. Vakuumnaya tekhnika. Oborudovanie, proektirovanie, tekhnologii, ekspluatatsiya. Ch. 2. Vakuumnye nasosy [Vacuum technique. Equipment, desihm, technologies, exploitation. P.2. Vacuum pumps]. Kazan’, Izd-vo KNITU Publ., 2016. 300 p. (In Russ.).
[2] Wang J., Cui F., Wei S. et al. Study on a novel screw rotor with variable cross-section profiles for twin-screw vacuum pumps. Vacuum, 2017, vol. 145, pp. 299–307, doi: https://doi.org/10.1016/j.vacuum.2017.09.006
[3] Pfaller D., Brümmer A., Kauder K. Optimized rotor pitch distributions for screw spindle vacuum pumps. Vacuum, 2011, vol. 85, no. 12, pp. 1152–1155, doi: https://doi.org/10.1016/j.vacuum.2011.03.002
[4] Li D., He Z., Wang C. et al. Design methodology and performance analysis of conical rotors for dry screw vacuum pumps. Vacuum, 2021, vol. 185, art. 110025, doi: https://doi.org/10.1016/j.vacuum.2020.110025
[5] Wang J., Wu M., Cui F. et al. Research of a novel eccentric involute rotor and its performance analysis for twin-screw vacuum pumps. Vacuum, 2020, vol. 176, art. 109309, doi: https://doi.org/10.1016/j.vacuum.2020.109309
[6] Kovacevic A., Rane S., Stosic N. Modelling of twin-screw machines by use of CFD. Positive Displacement Machines, 2019, pp. 423–441, doi: https://doi.org/10.1016/B978-0-12-816998-8.00015-7
[7] Ohbayashi T., Sawada T., Hamaguchi M. et al. Study on the performance prediction of screw vacuum pump. Appl. Surf. Sci., 2001, vol. 169–170, pp. 768–771, doi: https://doi.org/10.1016/S0169-4332(00)00788-1
[8] Mamontov M.A. Osnovy termodinamiki tela peremennoy massy [Basics of thermodynamics for a variable-mass body]. Tula, Priokskoe knizhn. izd-vo Pibl., 1970. 87 p. (In Russ.).
[9] Baldenko D.F., Bidman M.G., Kalishevskiy V.L. et al. Vintovye nasosy [Screw pumps]. Moscow, Mashinostroenie Publ., 1982. 228 p. (In Russ.).
[10] Malov D.A., Svichkar E.V., Klyucharov V.S. et al. Analysis of profiles of screw vacuum pumps. AIP Conf. Proc., 2020, vol. 2285, art. 030050, doi: https://doi.org/10.1063/5.0029126
[11] Salikeev S.I., Burmistrov A.V., Bronshtein M.D. et al. Non-contact vacuum pumps. A general-purpose method for conductance calculation of profile slot channels. Vak. Forschung und Prax., 2014, vol. 26, no. 1, pp. 40–44, doi: https://doi.org/10.1002/vipr.201400542
[12] Salikeev S.I., Burmistrov A.V., Bronshtein M.D. et al. Conductance calculation of channels in laminar gas flow regime at an arbitrary pressure difference. Vacuum, 2014, vol. 107, pp. 178–183, doi: https://doi.org/10.1016/j.vacuum.2014.01.016
[13] Salikeev S.I., Burmistrov A.V., Bronshtein M.D. et al. Conductance of slot channels formed by cylindrical walls: Monte Carlo calculations and experimental studies in the molecular gas flow regime. Vak. Forschung und Prax., 2013, vol. 25, no. 4, pp. 34–38, doi: https://doi.org/10.1002/vipr.201300531
[14] Burmistrov A.V., Salikeev S.I., Bronshtein M.D. et al. Conductance calculation of slot channels with variable cross section in molecular–viscous flow regime. Vak. Forschung und Prax., 2015, vol. 27, no. 1, pp. 36–40, doi: https://doi.org/10.1002/vipr.201500571
[15] Burmistrov A.V. Sozdanie i issledovanie beskontaktnykh vakuumnykh nasosov. Diss. dok. tekh. nauk [Vacuum pumps design and study. Doc. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2006. 363 p. (In Russ.).