Stand for Researching Contact Interaction in the System Ground — Elastic Cover — Wave Generator System of the Elastic-Screw Drive
Authors: Byakov K.E., Sorokin F.D., Mashkov K.Y., Popkov M.V. | Published: 06.08.2015 |
Published in issue: #8(665)/2015 | |
Category: Transportation and Power Engineering | |
Keywords: contact area, elastic-screw drive, chassis research stand, contact ground pressure, wave generator, shell testing stand |
The article shows that for ensuring sufficient bearing capacity of the high floatation chassis based on the elastic-screw drive and for adaptation of the drive to the changing underlying surface, the excessive pressure may change in a wide range. At that, the form of a contact area will take various configurations. In particular, a flat surface will be characteristic of the soil with low bearing capacity, and friable snow. The existing methods of calculation and creation of equilibrium profiles of elastic screw drive grid covers with asymmetrical laying of threads do not fully reflect the nonlinearity of a contact problem. The geometrical non-linearity of the cover and complex mechanical behavior of the soil require a verification of calculation methods, for example through full-scale experiments on a finished product, or on a mock-up on a testing stand. For this purpose on the basis of the existing stand, which was designed to research the interaction of the soil with wheel and caterpillar drives, a conceptually new stand has been created. The new stand allows researching deformed states and contact forces in the system ground – elastic cover – wave generator of the elastic-screw drive. Experimental research that can be carried out on the stand makes it possible to verify the mathematical model, methods of calculation and computer programs developed to study elastic-screw drives.
References
[1] Anikin A.A., Barakhtanov L.V. Raschet prokhodimosti gusenichnykh mashin pri dvizhenii po snegu [Calculation of terrain tracked vehicles when driving on snow]. Izvestiia akademii inzhenernykh nauk im. A.M. Prokhorova [Proceedings of the Academy of Engineering Sciences named after A.M. Prokhorov]. 2008, vol. 21, pp. 138–139.
[2] Kolotilin V.E., Shapkin V.A. Teoreticheskie issledovaniia posledstvii dvizheniia rotorno–vintovykh mashin po zasnezhennoi mestnosti [Theoretical studies of the effects of traffic rotary–screw machines on snow-covered terrain]. Izvestiia akademii inzhenernykh nauk im. A.M. Prokhorova [Proceedings of the Academy of Engineering Sciences named after A.M. Prokhorov]. 2008, vol. 21, pp. 50–63.
[3] Sorokin F.D., Popkov M.V. Rezinokordnaia obolochka elasto-vintovogo dvizhitelia [Rubber-cord shell elasto-screw propeller]. Tezisy dokladov pervoi mezhdunarodnoi konferentsii Deformirovanie i razrushenie kompozitnykh materialov i konstruktsii [Abstracts of the First International Conference Deformation and fracture of composite materials and structures]. Moscow, IMASh RAN publ., 2014. 47 p.
[4] Chan Ki An. Razrabotka metodov rascheta bezmomentnykh setchatykh obolochek vrashcheniia s nesimmetrichno ulozhennymi nitiami. Diss. kand. tekh. nauk [Development of methods for calculating the net momentless shells of revolution with asymmetrically laid yarns. Cand. tech. sci. diss.]. Moscow, Bauman Press, 2015. 146 p.
[5] Vezdekhodnye transportno-tekhnologicheskie mashiny. Osnovy teorii dvizheniia [Rough terrain transport and technological machines. Fundamentals of the theory of motion]. Ed. Beliakov V.V., Kuliashov A.P. N.Novgorod, TALAM publ., 2004. 960 p.
[6] Makarov V.S., Zeziulin D.V., Beliakov V.V. Mnogourovnevaia model’ snega kak polotna puti dlia transportno-tekhnologicheskikh mashin na primere territorii Rossiiskoi Federatsii [Multilevel models of snow as the roads for transport and technological vehicles on the example of the Russian Federation]. Fundamental’nye issledovaniia [Fundamental Research]. 2013, no. 10, pt. 2, pp. 270–276. Available at: www.rae.ru/fs/?section=content&op= show_article&article_id=10001477 (accessed 29 October 2014).
[7] Sogin I.A., Shapkin V.A. Rekomenduemye konstruktivnye parametry mashin so shnekovym dvizhitelem [The recommended design parameters of machines with screw propeller]. Sbornik materialov 71-i mezhdunarodnoi nauchno tekhnicheskoi konferentsii (12–13 oktiabria 2010 g.) [Collected materials 71th International Scientific Conference (12–13 October 2010)]. Nizhnii Novgorod, NNTU publ., 2010, pp. 224–225.
[8] Kaiumov R.A., Shakirzianov F.R. Modelirovanie povedeniia i otsenka nesushchei sposobnosti sistemy tonkostennaia konstruktsiia–grunt s uchetom polzuchesti i degradatsii grunta [Behavior modeling and evaluation of the carrying capacity of thin — walled structures, taking into account soil creep and soil degradation]. Uchenye zapiski Kazanskogo Universiteta. Ser. Fiziko-matematicheskie nauki [Proceedings of Kazan University. Physics and Mathematics Series]. 2011, vol. 153, no. 4, pp. 67–75.
[9] Chizhov D.A. Razrabotka kompleksnogo metoda povysheniia energoeffektivnosti polnoprivodnoi kolesnoi mashiny. Diss. kand. tekh. nauk [Development of integrated techniques to improve energy-wheel drive wheeled vehicle. Cand. tech. sci. diss.]. Moscow, Bauman Press, 2012. 146 p.
[10] Sorokin F.D., Popkov M.V., Biakov K.E., Mashkov K.Iu. Raschet bol’shikh peremeshchenii rezinokordnoi obolochki elasto-vintovogo dvizhitelia ot deistviia lokal’noi nagruzki bessetochnym metodom [The calculation of large displacements rubber-cord shell elasto-screw propeller of a local load from gridless method]. Inzhenernyi vestnik [Engineering Herald]. 2014, no. 12, pp. 144–150. Available at: http://engbul.bmstu.ru/doc/749198.html (accessed 23 April 2015).