Research of Internal Dynamics of Hydro-Pneumatic Devices
Authors: Sarach E.B., Tsipilev A.A. | Published: 20.02.2017 |
Published in issue: #2(683)/2017 | |
Category: Transportation and Power Engineering | |
Keywords: hydro-pneumatic suspension, ride quality, heat-loaded block, Schmidt finite difference method, Simulink/Simscape environment, SimHydraulics library |
Internal dynamics of hydro-pneumatic devices is an important area for research, with thermal loading being of particular relevance. Currently used methods of mathematical modeling based on the finite element method require individual selection options for each device. In this paper, the authors use thermal loading model based on the Schmidt finite difference method. It can be used to study hydro-pneumatic devices of various designs with minimal preliminary time required. The results of the study of internal dynamics of such hydro-pneumatic devices are presented. These include the results of simulation and bench testing of hydro-pneumatic suspensions of a wheeled and a tracked vehicle of the light weight class for thermal loading. The high reliability of the mathematical model developed in the Simulink/Simscape environment is demonstrated.
References
[1] Smirnov A.A. Matematicheskoe modelirovanie pnevmogidravlicheskikh ustroistv sistem podressorivaniia transportnykh sredstv. Diss. kand. tekh. nauk [Mathematical modeling of devices pneumatic hydraulic suspension systems of vehicles. Cand. tech. sci. diss.]. Moscow, 1999. 179 p.
[2] Zhileikin M.M., Sarach E.B., Kotiev G.O. Eksperimental’noe issledovanie nagruzochnykh kharakteristik dvukhkamernoi pnevmogidravlicheskoi ressory podveski avtomobil’nykh platform novogo pokoleniia srednei i bol’shoi gruzopod"emnosti [Experimental research of loading characteristics of a two-chamber pneumo-hydraulic spring of a suspension bracket of new generation automobile platforms of average and big load-carrying capacities]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2011, no. 12. Available at: http://technomag.bmstu.ru/doc/346642.html (accessed 16 October 2016).
[3] Kotiev G.O., Smirnov A. A., Shilkin V. P. Issledovanie rabochikh protsessov v pnevmogidravlicheskikh sistemakh podressorivaniia gusenichnykh mashin [Research of working processes in fluid suspension systems of tracked vehicles]. Moscow, Bauman Press, 2001. 80 p.
[4] Kotiev G.O., Sarach E.B. Kompleksnoe podressorivanie vysokopodvizhnykh dvukhzvennykh gusenichnykh mashin [Integrated cushioning highly mobile articulated tracked vehicle]. Moscow, Bauman Press, 2010. 184 p.
[5] Tsipilev A.A. Issledovanie teplonagruzhennosti pnevmogidravlicheskikh ustroistv sistem podressorivaniia bystrokhodnykh transportnykh mashin [Research heat load devices pneumohydraulic suspension systems of high-speed transport cars]. Trudy NAMI [Proceedings of the NAMI]. 2015, no. 261, pp. 152–172.
[6] Sukhorukov A.V. Upravlenie dempfiruiushchimi elementami v sisteme podressorivaniia bystrokhodnoi gusenichnoi mashiny. Diss. kand. tekh. nauk [Control damping elements in the system of high-speed tracked vehicle suspension. Cand. tech. sci. diss.]. Moscow, 2003. 149 p.
[7] Lobasova M.S., Finnikov K.A., Milovidova T.A., Dekterev A.A., Serebrennikov D.S., Minakov A.V., Kuzovatov I.A., Vasil’ev V.V. Teplomassoobmen: kurs lektsii. [Heat and mass transfer: a course of lectures]. Krasnoiarsk, IPK SFU, 2009.
[8] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Energiia publ., 1977.
[9] Furunzhiev R.I., Ostanin A.N. Upravlenie kolebaniiami mnogoopornykh mashin [Management fluctuations multisupport machines]. Moscow, Mashinostroenie publ., 1984. 206 p.
[10] Sarach E.B., Tsipilev A.A. Metodika analiticheskogo podbora konstruktivnykh parametrov pnevmogidravlicheskikh ressor [Technique for Analytical Selection of Design Parameters of Pneumatic-hydraulic Springs]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 11. Available at: http://technomag.neicon.ru/en/doc/733738.html (accessed 16 October 2016).
[11] Pozdeev A.V., Novikov V.V., D’iakov A.S., Pokhlebin A.V., Riabov I.M., Chernyshov K.V. Reguliruemye pnevmaticheskie i pnevmogidravlicheskie ressory podvesok avtotransportnykh sredstv [Adjustable pneumatic and pneumatic-spring suspension vehicles]. Volgograd, VolgSTU publ., 2013. 244 p.
[12] Kir’ianov D.V., Kir’ianova E.N. Vychislitel’naia fizika [Computational physics]. Moscow, Polibuk Mul’timedia publ., 2006. 352 p.
[13] Matlab. Available at: http://uk.mathworks.com/help/matlab (accessed 16 October 2016).
[14] Ruppel’ A.A., Sagandykov A.A., Korytov M.S. Modelirovanie gidravlicheskikh sistem v MATLAB [Simulation of hydraulic systems in MATLAB]. Omsk, SibADI publ., 2009. 172 p.
[15] Simscape. Available at: http://matlab.ru/products/simscape (accessed 16 October 2016).