Design Features of Technological Process of Tangential Turning
Authors: Skiba V.M. | Published: 06.08.2015 |
Published in issue: #8(665)/2015 | |
Category: Technology and Process Machines | |
Keywords: designing, technological process, tangential turning, turning efficiency, tooling |
Intensive cutting methods, enhanced tool design, and progressive technological processes based on multi-blade and multi-tool techniques such as tangential turning are used to improve the performance of machine tools through reducing the effective and auxiliary cutting time. The use of climb tangential turning makes it possible to increase cutting efficiency in several ways. When designing the technological process and tooling for the climb tangential cutting, the following advantages of the method are used: kinematic scheme simplicity, high rigidity and vibration resistance, differentiation of stock removal, minimal cutting force at the end of the cutting cycle, and high concentration of machining. These advantages allow manufacturing complex shape parts with simultaneous roughing and finishing. The correlation between the parameters of the machine tool, tooling and cutting modes is taken into account when designing a technological system using this method. The article highlights special features pertaining to tool design for machining large-size parts that guarantee shorter turning time while maintaining high quality of the machined surface.
References
[1] Spravochnik tekhnologa-mashinostroitelia [Directory technologist-machinist]. Ed. Dal’skii A.M., Kosilova A.G., Meshcheriakov R.K., Suslov A.G. In 2 vol., vol. 1. Moscow, Mashinostroenie publ., 2001. 912 p.
[2] Andreev V.N., Borovskii G.V., Borovskii V.G., Grigor’ev S.N. Instrument dlia vysokopro-izvoditel’nogo i ekologicheski chistogo rezaniia [Tool for high and cleaner cutting]. Moscow, Mashinostroenie publ., 2010. 480 p.
[3] Vinogradov D.V. Vysokoproizvoditel’naia obrabotka metallov rezaniem [High metal cutting]. Moscow, Poligrafiia publ., 2003. 301 p.
[4] Proektirovanie avtomatizirovannykh stankov i kompleksov [Design of automated machines and systems]. In 2 vol. Vol. 1. Ed. Chernianskii P.M. Moscow, Bauman Press, 2014. 332 p.
[5] Grigor’ev S.N. Metody povysheniia stoikosti rezhushchego instrumenta [Methods for increasing the resistance of the cutting tool]. Moscow, Mashinostroenie publ., 2009. 368 p.
[6] Bykov V.V., Bykov V.P. Issledovatel’skoe prektirovanie v mashinostroenii [Research design in mechanical engineering]. Moscow, Mashinostroenie publ., 2011. 256 p.
[7] Grubyi S.V. Metody optimizatsii rezhimnykh parametrov lezviinoi obrabotki [Methods of optimization of operating parameters of the processing blade]. Moscow, Bauman Press, 2008. 91 p.
[8] Agapov S.I., Lipatov A.A. Vliianie dliny prokhoda na iznos instrumenta i optimal’nuiu skorost’ rezaniia pri tochenii austenitnoi korrozionno-stoikoi stali [Effect of the length of the passage of tool wear and optimum cutting speed for turning austenitic corrosion-resistant steel]. Tekhnologiia mashinostroeniia [Engineering Technology]. 2003, no. 2, pp. 8–9.
[9] Sibikin M.Iu., Nepomiluev V.V., Semenov A.N., Timofeev M.V. Sovremennoe metalloo-brabatyvaiushchee oborudovanie [The modern metal-working equipment]. Moscow, Mashinostroenie publ., 2013. 308 p.