Calculations of Actuator Promising Designs
Authors: Gavryushin S.S., McMillan A., Nikolaeva A.S., Podkopaeva T.B. | Published: 06.08.2015 |
Published in issue: #8(665)/2015 | |
Category: Technology and Process Machines | |
Keywords: actuator, thin-walled shell, large displacements, nonlinear deformation, «snap-through» |
Actuator calculation is a problem of current interest. It is required to develop new actuator designs with better performance. The finite element method was used for complex shape bimetallic actuator calculation. The algorithm was implemented in Abaqus finite element software. The actuator elastic characteristic and deformed shape are the results of the calculation. Calculation results for different size actuators were compared. A new design of a thermo-bimetallic actuator consisting of a shallow dome with a U-shaped tongue was de-scribed. It deforms with a «snap-through» when the temperature reaches a critical level. The layers of bimetal at the shallow dome and tongue are placed on the opposite sides, making possible the maximization of displacement of the actuator characteristic points. The proposed actuator design and the developed calculation methodology can be recommended for the implementation to the calculation practice and actuator element base development.
References
[1] Tiniakov Iu.N., Mileshin S.A., Andreev K.A., Tsygankov V.Iu. Analiz konstruktsii zarubezhnykh prototipov datchikov davleniia [Analysis of the structures of foreign prototypes of pressure sensors]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2011, № 9. URL: http://technomag.edu.ru/doc/219081.html (accessed 20 April 2015).
[2] Grigoliuk E.I., Lopanitsyn E.A. Konechnye progiby, ustoichivost’ i za- kriticheskoe povedenie tonkikh pologikh obolochek [End deflection resistance and pro-critical behavior of thin shallow shells]. Moscow, MGTU «MAMI» publ., 2004. 162 p.
[3] Popov E.P. Iavlenie bol’shogo pereskoka v uprugikh sistemakh i raschet pruzhinnykh kontaktnykh ustroistv [The phenomenon of a large jump in elastic systems and calculation of the spring contact devices]. Inzhenernyi sbornik [Engineering collection]. 1948, no. 5, pp. 62–92.
[4] Bich D.H., Tung H.V. Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Nonlinear Mechanics, 2011, vol. 46, no. 9, pp. 1195–1204.
[5] Li Q.S., Liu J., Tang J. Buckling of shallow spherical shells including the effects of transverse shear deformation. International Journal of Mechanical Sciences, 2003, vol. 45, no. 9, pp. 1519–1529.
[6] Gavriushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennyi analiz elementov konstruktsii mashin i priborov [Numerical analysis of structural elements of machines and devices]. Moscow, Bauman Press, 2014. 479 p.
[7] Gavriushin S.S. Chislennoe modelirovanie protsessov nelineinogo deformirovaniia tonkikh uprugikh obolochek [Numerical simulation of nonlinear deformation of thin elastic shells]. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods]. 2014, no. 1, pp. 115–130.
[8] Valishvili N.V. Metody rascheta obolochek vrashcheniia na EtsVM [Methods for calculating the shells rotation digital computer]. Moscow, Mashinostroenie publ., 1976. 278 p.
[9] Agapov V. P. Metod konechnykh elementov v statike, dinamike i ustoichivosti konstruktsii [The finite element method in statics, dynamics and stability of structures]. Moscow, Assotsiatsii stroitel’nykh vuzov publ., 2004. 248 p.
[10] Ksenofontov P.V., Akulov A.S., Vinnitskii A.F. Termoreguliator [Thermoregulator]. Patent RF, no. 2067783, 1996.
[11] Pevzner M.G. Termobimetallicheskoe rele [Thermo bimetallic relay]. Patent RF, no. 2069024, 1996.
[12] Taylor J.C. Snap acting thermally responsive actuators. Patent US, no. 4160226, 1979.