Sensitivity of Forced Vibrations of the Frame with an Unbalanced Rotor to the Variations of Bracing Stiffness
Authors: Arinchev S.V., Fedyushkin A.S. | Published: 08.04.2016 |
Published in issue: #4(673)/2016 | |
Category: Technology and Process Machines | |
Keywords: rotor imbalance, elastic frame, forced vibration sensitivity, bracing stiffness |
Most of the literature in the rotor dynamics field is focused on the analysis of rotor behavior and rotor support properties. The influence of the rotor on the vibrations of the elastic supporting structure requires further study. As the rotation speed increases, even a small imbalance may cause an impermissible amplitude of forced vibrations of the given structural unit. This article presents the analysis of sensitivity of the forced vibration amplitude of the given unbalanced rotor frame to the bracing stiffness variations. The bracing stiffness is equivalent to the linear (torsional) integral stiffness of the frame segments. Conventional finite element software of the MSC.Nastran type normally does not have the facilities to directly formulate and solve the sensitivity analysis problem, therefore the lumped parameter method is proposed. The frame with the rotor is replaced by an equivalent multimass model. An important characteristic of the model is the flexibility matrix where the elements are generally not represented analytically but numerically. The authors present calculation formulae of the flexibility matrix derivatives with respect to the bracing stiffness variations. These formulae do not required matrix differentiation.
References
[1] Goroshko A.V., Roizman V.P. Issledovanie dinamiki i snizhenie vibroaktivnosti turbonasosnogo agregata putem resheniia obratnykh zadach [Study of dynamics and decreasing of vibroactivity of the turbopump assembly by solving the inverse problem]. Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education]. 2014, no. 1, pp. 29–35.
[2] GOST ISO 1940-1-2007. Vibratsiia. Trebovaniia k kachestvu balansirovki zhestkikh rotorov. Chast’ 1. Opredelenie dopustimogo disbalansa [ISO 1940-1: 2003 Mechanical vibration – Balance quality requirements for rotors in a constant (rigid) state – Part 1: Specification and verification of balance tolerances (IDT)]. Moscow, Standartinform publ., 2007. 52 p.
[3] Ovchinnikov I.V., Khomiakov A.M. Nesushchaia sposobnost’ rabochego kolesa reaktivnoi turbiny [Bearing capacity of reaction turbine impeller]. Vestnik Moskovskogo Aviatsionnogo Instituta [Vestnik Moskovskogo aviatsionnogo instituta]. 2010, vol. 17, no. 3, p. 15.
[4] Akisanya O.A. Reaction wheel vibrational force disturbance input to the design of a six-axis multi-configurable hexapod insolator. Master of Science dissertation. USA, California State University, Long Beach, 2002.
[5] Leont’ev M.K., Fomina O.N. Aktivnoe upravlenie zhestkost’iu opornykh uzlov rotorov. Konstruktsiia i staticheskii analiz [An active stiffness control for bearing support of gas-turbine engine rotors. Structure and static analysis]. Vestnik Moskovskogo Aviatsionnogo Instituta [Vestnik Moskovskogo aviatsionnogo instituta]. 2007, vol. 14, no. 4, p. 17.
[6] Kamesh D., Pandiyan R., Ghosal A. Passive vibration isolation of reaction wheel disturbances using a low-frequency flexible space platform. Journal of sound and vibration, 2012, vol. 331, pp. 1310–1330.
[7] Troitskii A.V. Matematicheskie modeli i metody analiza chuvstvitel’nosti v zadachakh optimizatsii konstruktsii rotorov. Diss. kand. tekh. nauk [Mathematical models and methods of sensitivity analysis in optimization problems the construction of rotors. Cand. tech. sci. diss.]. Moscow, Bauman Press, 2006. 163 p.
[8] Temis Iu.M., Temis M.Iu., Egorov A.M. Issledovanie chuvstvitel’nosti kolebanii rotora statsionarnoi GTU na podshipnikakh skol’zheniia k izmeneniiu osnovnykh parametrov sistemy [Study of vibration sensitivity of a rotor of stationary gas-turbine unit on slide bearings to change of main settings of the system]. Izvestiia MGTU MAMI [Izvestiya MGTU MAMI]. 2013, vol. 3, no. 1(15), pp. 139–147.
[9] Arinchev S.V. Teoriia kolebanii nekonservativnykh system [The theory of fluctuations of nonconservative system]. Moscow, Bauman Press, 2002. 464 p.
[10] Tushev O.N., Berezovskii A.V. Chuvstvitel’nost’ sobstvennykh znachenii i vektorov k variatsiiam parametrov konechno-elementnykh modelei konstruktsii [Sensitivity of Eigenvalues and Vectors for Variations of Parameters of Finite Element Models of Construction]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2007, no. 1, pp. 35–45.