The Relationship between Components of the Cutting Power and the Instantaneous Cutting Capacity when Creep-Feed Grinding the Titanium Alloy with Continuous Dressing of Abrasive Tools
Authors: Nosenko V.A., Nosenko V.A., Lyasin D.N., Kremenetsky L.L. | Published: 11.05.2016 |
Published in issue: #5(674)/2016 | |
Category: Technology and Process Machines | |
Keywords: titanium alloy, creep-feed grinding, components of cutting force, continuous dressing, mathematic modeling, instantaneous cutting capacity, step-by-step animation |
The article describes the patterns ruling the changes of the cutting force components when creep-feed grinding workpieces of varying lengths made of VT8 titanium alloy. It is shown that the use of continuous dressing can help to stabilize the grinding process, and reduce the cutting force components Pz and Py 2 to 3 times. At the incision and exit stages, the cutting force components as well as the nominal instantaneous cutting capacity are described by incomplete polynomials of the second degree with a high validity coefficient. When grinding with a diamond roller with continuous dressing of the abrasive tool, the change patterns of the instantaneous cutting capacity and the cutting force components Pz and Py are the same not only at the incision and exit stages, but also at the stage of constant length of arc (or transition stage). The numerical values of the pair correlation coefficient of the cutting forces Pz, Py, and the nominal instantaneous cutting capacity q indicate a high coupling force between them. The functional relationship between the parameters is approximated by a direct proportional relation. Using the proportionality coefficient, the calculated values of the nominal instantaneous cutting capacity qb are translated into model values of the cutting force components. A specialized software system that can model solid body parameters is developed to automate the calculations and modelling of creep-feed grinding. The system visualizes creep-feed grinding through step-by-step animation, calculates reliability factors and models cutting force components of the process.
References
[1] Li Z.Z., Zheng M., Zheng L., Wu Z.J., Liu D.C. A solid model-based milling process simulation and optimization system integrated with CAD/CAM. Journal of Materials Processing Technology, 2003, vol. 138, pp. 513–517.
[2] Novoselov Iu.K. Dinamika formoobrazovaniia poverkhnostei pri abrazivnoi obrabotke [The dynamics of the shaping surfaces during abrasive machining]. Sevastopol, SevNTU publ., 2012. 304 p.
[3] Nosenko V.A., Nosenko S.V. Tekhnologiia shlifovaniia [Grinding technology]. Volgograd, IUNL VolgGTU publ., 2011. 425 p.
[4] Nosenko V.A., Zhukov V.K., Avilov A.V. Ploshchad’ i tolshchina secheniia srezaemogo sloia na operatsii ploskogo glubinnogo shlifovaniia [The size and thickness of cut layer cross-section on surgery flat deep grinding]. Spravochnik. Inzhenernyi zhurnal s prilozheniem [Handbook. An Engineering journal with appendix]. 2006, no. 1, pp. 22–27.
[5] Nosenko V.A., Nosenko S.V. Mathematical models of operating time and cutting capacity for various stages of flat creep feed grinding of horizontal surface by circle of direct profile. Journal of Machinery Manufacture and Reliability, 2010, vol. 39, no. 4, pp. 380–385.
[6] Nosenko S.V., Nosenko V.A., Zotova S.A., Kremenetskii L.L. Matematicheskie modeli narabotki i rezhushchei sposobnosti pri glubinnom shlifovanii zagotovok maloi dliny [Mathematical models of operating time and cutting ability in the process of creep-feed grinding of workpieces of small length]. Mashinostroenie: setevoi elektron. nauch. zhurnal [Russian Internet Journal of Industrial Engineering]. 2015, vol. 3, no. 2, pp. 40–46.
[7] Nosenko V.A., Zotova S.A., Nosenko S.V. Run and cutting power of a conical-camber disk under creep feed grinding of a horizontal face. Journal of Machinery Manufacture and Reliability, 2009, vol. 38, no. 4, pp. 373–378.
[8] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Morfologiia poverkhnosti korunda posle mikrotsarapaniia titanovogo splava [Morphology of a Surface of corundum after a microscratching of titanium alloy]. Mashinostroenie: setevoi elektron. nauch. zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, vol. 2, no. 3, pp. 66–71.
[9] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Struktura i khimicheskii sostav poverkhnosti karbida kremniia posle mikrotsarapaniia titana [Structure and chemical composition of a surface of carbide of silicon after a microscratching of titanium]. Mashinostroenie: setevoi elektron. nauch. zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, vol. 2, no. 4, pp. 14–20.
[10] Nosenko V.A. Vliianie kontaktnogo vzaimodeistviia na iznos abrazivnogo instrumenta pri shlifovanii [The effect of contact interaction on the wear of abrasive tools in grinding]. Problemy shinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2005, no. 1, pp. 73–77.
[11] Silin S.S., Khrul’kov V.A., Lobanov A.V., Rykunov N.S. Glubinnoe shlifovanie detalei iz trudnoobrabatyvaemykh materialov [Deep grinding of difficult materials]. Moscow, Mashinostroenie publ., 1984. 64 p.
[12] Nosenko V.A., Nosenko S.V., Zhukov V.K., Vasil’ev A.A. Deep grinding of incomplete-cycle surfaces, with periodic straightening of the wheel. Russian Engineering Research, 2008, vol. 28, no. 5, pp. 442–449.
[13] Poletaev V.A., Volkov D.I. Glubinnoe shlifovanie lopatok turbin [Deep grinding of turbine blades]. Moscow, Mashinostroenie publ., 2009. 272 p.
[14] Starkov V.K. Shlifovanie vysokoporistymi krugami [Highly porous grinding circles]. Moscow, Mashinostroenie publ., 2007. 688 p.
[15] Nosenko V.A., Nosenko S.V. Unidirectional and opposing deep grinding of titanium alloy with periodic wheel adjustment. Russian Engineering Research, 2010, vol. 30, no. 10, pp. 1016–1021.
[16] Nosenko V.A., Nosenko S.V. Ploskoe glubinnoe shlifovanie pazov v zagotovkakh iz titanovogo splava s nepreryvnoi pravkoi shlifoval’nogo kruga [Flat deep groove grinding in titanium alloy block with continuous dressing grinding wheel]. Vestnik mashinostroeniia [Russian Engineering Research]. 2013, no. 4, pp. 74–79.
[17] Nosenko V.A., Larionov N.F., Egorov N.I., Volkov M.P. Vybor kharakteristiki abrazivnogo instrumenta i SOZh dlia glubinnogo shlifovaniia [The selection characteristics of the abrasive tool and the coolant for deep grinding]. Vestnik mashinostroeniia [Russian Engineering Research]. 1989, no. 5, pp. 17–21.
[18] Nosenko V.A., Nosenko S.V. Deep grinding of titanium alloy with continuous wheel correction. Russian Engineering Research, 2010, vol. 30, no. 11, pp. 1124–1128.
[19] Nosenko V.A., Avilov A.V., Nosenko S.V. Zakonomernosti izmeneniia sily ploskogo glubinnogo shlifovaniia [Laws of change of force of flat deep grinding]. Spravochnik. Inzhenernyi zhurnal [Handbook. An Engineering journal with appendix]. 2009, no. 7, pp. 10–26.