Combined Loading Processes in Technological Problems
Authors: Vinnik P.M., Ivanov K.M. | Published: 09.06.2016 |
Published in issue: #6(675)/2016 | |
Category: Technology and Process Machines | |
Keywords: combined loading processes, monotonic deformation, measure of deviation from monotony, rheological model |
The estimation of proximity of a modelled process to monotonic or other specific combined loading cases, which helps to predict rheological model imprecisions, is an important task. This paper describes combined loading processes in terms of maintaining their unique determination — proximity to the monotonic process determined by Smirnov-Alyaev. The authors developed an algorithm of selection of a rheological model (the stress-strain curve) based on the classification of combined loading processes according to the change of deformation type and rotation angle of the directing tensor of deformation. The emphasis is put on the practical use of this algorithm. It is shown that quasi-simple loading in the general theory of plasticity can be described naturally in this classification. A scalar parameter is proposed, which helps to evaluate the proximity of an arbitrary combined loading process to a monotonic one. Based on this parameter, the concepts of weakly non-monotonic and strongly non-monotonic processes are introduced. An example of practical use of the proximity measure is given. For torsion deformation of a round rod, the authors carried out an evaluation of possible errors that may occur when the proposed algorithm of rheological model selection is used. The results of this research can be used to predict the adequacy of numerical models for metalworking technological processes.
References
[1] Il’iushin A.A. Trudy (1946-1966). T. 2. Plastichnost’ [Proceedings (1946-1966). Vol. 2. Plasticity]. Moscow, Fizmatlit publ., 2004. 480 p.
[2] Ivanov K.M., Mitiushov A.A., Ul’ianov E.I., Usmanov D.V., Vinnik P.M. Mekhanicheskie svoistva materialov pri slozhnom nagruzhenii [Mechanical properties of materials under complex loading]. Saint-Petersburg, VOENMEH publ., 2011. 150 p.
[3] Smirnov-Aliaev G.A. Soprotivlenie materialov plasticheskomu deformirovaniiu [Resistance of materials to plastic deformation]. Leningrad, Mashinostroenie publ., 1978. 368 p.
[4] Kolmogorov V.L. K matematicheskomu modelirovaniiu dinamiki techeniia i razrusheniia metalla pri plasticheskoi deformatsii. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Matematicheskoe modelirovanie sistem i protsessov [Bulletin of Perm State Technical University. Mathematical modeling of systems and processes]. 2001, no. 9, pp. 47–66.
[5] Utiashev F.Z. Kinematika techeniia i strukturoobrazovanie metalla pri intensivnoi plasticheskoi deformatsii [Kinematics of flow and structure formation of a metal under severe plastic deformation]. Fizika i tekhnika vysokikh davlenii [High pressure physics and technics]. 2013, vol. 23, no. 1, pp. 45–55.
[6] Bogatov A.A., Puzyrev S.S. Osobennosti formoizmeneniia i uprochneniia metalla pri obrabotke davleniem so znakoperemennoi deformatsiei [Features of forming and hardening of metal by pressure treatment with an alternating deformation]. Innovatsionnye tekhnologii v metallurgii i mashinostroenii. Ural’skaia nauchno-pedagogicheskaia shkola imeni professora A.F. Golovina: materialy 6-i mezhdunarodnoi molodezhnoi nauchno-prakticheskoi konferentsii. [Innovative technologies in metallurgy and mechanical engineering: proceedings of the 6th international youth scientific-practical conference «Innovative technologies in metallurgy and mechanical engineering. Ural scientific and pedagogical school named after Professor A.F. Golovin»]. Ekaterinburg, Ural Federal University publ., 2012, pp. 9–14.
[7] Ivanov K.M., Vinnik P.M., Ivanov V.N. Mekhanicheskie svoistva materialov pri slozhnom nagruzhenii [Mechanical properties of materials under complex loading]. Vestnik Moskovskogo aviatsionnogo instituta [Bulletin of Moscow aviation institute]. 2012, vol. 19, no. 5, pp. 172–181.
[8] Ivanov K.M., Vinnik P.M. Dopustimye zavisimosti skorostei deformatsii ot deformatsii v odnonapravlennykh protsessakh [Valid the dependence of the strain rates from the deformation in unidirectional processes]. Obrabotka materialov davleniem [Pressure treatment of materials]. 2014, no. 1 (38), pp. 26–31.
[9] Ivanov K.M., Vinnik P.M. Dopustimye zavisimosti skorostei deformatsii ot deformatsii v odnonapravlennykh protsessakh bez diagonalizatsii tenzora deformatsii [Valid the dependence of the strain rates from the deformation in unidirectional processes without diagonalization of the tensor of deformation]. Progressivnye metody i tekhnologicheskoe osnashchenie protsessov obrabotki metallov davleniem: Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, Sankt-Peterburg, 14–17 oktiabria 2014 [Materials of international scientific-technical conference «Progressive methods and technologies of processing of metals pressure», Saint-Petersburg, 14–17 October 2014]. Saint-Petersburg, BSTU publ., 2014, pp. 91–94.
[10] Zubchaninov V.G. Ustoichivost’ i plastichnost’. T. 2. Plastichnost’ [Stability and flexibility. Vol. 2. Plasticity]. Moscow, Fizmatlit publ., 2008. 396 p.
[11] Golubev Iu.F. Algebra kvaternionov v kinematike tverdogo tela [Quaternion algebra in rigid body kinematics]. Preprinty IPM im. M.V. Keldysha [KIAM Preprint no. 39]. 2013, no. 39, 23 p. Available at: http://library.keldysh.ru/preprint.asp?id=2013-39 (accessed 10 November 2015).
[12] Gordeev V.N. Kvaterniony i trekhmernaia geometriia [Application of quaternions in problems of orientation of a rigid body]. Kiev, 2012. Available at: http://www.techlibrary.ru (accessed 09 September 2015).
[13] Stepin P.A. Soprotivlenie materialov [Strength of materials]. St. Petersburg, Moscow, Krasnodar, Lan’ publ., 2012. 320 p.
[14] Nadai A. Plastichnost’ i razrushenie tverdykh tel [Plasticity and fracture of solids]. Moscow, Inostrannaia literature publ., 1954. 648 p.