The Selection of High-Porous Boron Nitride Wheels Based on Topography of W9Mo4Co8 Plates for Pendulum Grinding Using Fuzzy Logic
Authors: Soler Y.I., Shustov A.I., Nguen M.T. | Published: 30.06.2016 |
Published in issue: #7(676)/2016 | |
Category: Technology and Process Machines | |
Keywords: grinding, surface quality, median, quartile latitude, fuzzy logic, desirability function |
The grinding process is characterized by instability created by abrasive tools. In view of this, the output parameters of the process that characterizes surface topography of high-speed steel plates W9Mo4Ko8 are estimated using statistical methods. The existing deviations from normality of distributions resulted in the emphasis of the study being placed on rank statistics where medians and quartile latitudes reflected measures of position and dispersion, respectively. The cutting ability of 11 types of wheels with regard to roughness, deviation from flatness, and micro hardness is assessed through fuzzy logic modeling in the MATLAB environment with the application of Fuzzy Logic Toolbox extension package. This AI system has shown that based on the complex assessment of surface topography, grinding should be done by high-porous cubic boron nitride wheels such as LKV50 B126 100 O V К27-КF40 and CBN30 B126 100 L V K27-КF40, which are included into one cutting ability group and rated as «very good».
References
[1] Kremen’ Z.I., Iur’ev V.G., Baboshkin A.F. Tekhnologiia shlifovaniia v mashinostroenii [Grinding technology in mechanical engineering]. St. Petersburg, Politekhnika publ., 2007. 320 p.
[2] Starkov V.K. Shlifovanie vysokoporistymi krugami [Highly porous grinding circles]. Moscow, Mashinostroenie publ., 2007. 688 p.
[3] GOST 25142–82. Sherokhovatost’ poverkhnosti. Terminy i opredeleniia [State Standard 25142–82. The surface roughness. Terms and Definitions]. Moscow, Standartinform publ., 1982. 68 p.
[4] GOST 24642–81. Dopuski formy i raspolozheniia poverkhnostei. Osnovnye poniatiia i oboznacheniia [State Standard 24642–81. Tolerances of form and position of surfaces. Basic concepts and notation]. Moscow, Standartinform publ., 1984. 68 p.
[5] Soler Ya.I., Lgalov V.V., Strelkov A.B. Otsenka rezhushchikh svoistv abrazivnykh krugov razlichnoi poristosti po kriteriiu formy ploskikh detalei shtampov Kh12 [Evaluation of various porosity abrasive cutting properties by the criterion of form accuracy of the plane parts of steel X12]. Metalloobrabotka [Metalworking]. 2012, no. 1 (67), pp. 5–10.
[6] Soler Ya.I., Shustov A.I. Puti uluchsheniia mikrogeometrii bystrorezhushchikh plastin pri shlifovanii vysokoporistymi nitridborovymi krugami [Ways of improving the micro-geometry of high-speed plates during polishing with highly porous boron nitride circles]. Nauchnoe obozrenie [Science Review]. 2014, no. 8, pt. 1, pp. 94–101.
[7] Soler Ya.I., Lgalov V.V. Izuchenie mikrotverdosti formoobrazuiushchikh detalei shtampovoi osnastki pri abrazivnom shlifovanii [Study of shaping die tooling parts microhardness under abrasive grinding]. Vestnik IrGTU [Bulletin of Irkutsk State Technical University]. 2012, no. 7 (66), pp. 48–54.
[8] Hollander M., Wolfe D.A. Nonparametric statistical methods. New Jersey, Wiley–Interscience, 1999. 787 p.
[9] Sachs L. Applied Statistics: A Handbook of Techniques. New-York, Springer-Verlag, 1984. 707 p.
[10] Wheeler D., Chambers D. Statisticheskoe upravlenie protsessami [Statistical process control]. Moscow, Al’pina Biznes Buks publ., 2009. 469 p.
[11] GOST R ISO 5725-1–2002. Tochnost’ (pravil’nost’ i pretsizionnost’) metodov i rezul’tatov izmereniia. Ch. 1. Osnovnye poniatiia i opredeleniia [State Standard R ISO 5725-1–2002. Accuracy (trueness and precision) of measurement methods and results. Pt. 1: Basic concepts and definitions]. Moscow, Standartinform publ., 2002. 24 p.
[12] Ali Y.M., Zhang L.C. A fuzzy model for predicting burns in surface grinding of steel. International Journal of Machine Tools and Manufacture, 2004, vol. 44, pp. 563–571.
[13] Ali Y.M., Zhang L.C. Surface roughness prediction of ground components using a fuzzy logic approach. Journal of Materials Processing Technology, 1999, vol. 89–90, pp. 561–568.
[14] Viatchenin D.A. Nechetkie metody avtomaticheskoi klassifikatsii [Fuzzy methods of automatic classification]. Minsk, UP Tekhnoprint publ., 2004. 219 p.
[15] Mandrov B.I., Baklanov S.D., Baklanov D.D., Vlesko A.S., Putivskii A.N., Sukhinina S.D. Primenenie funktsii zhelatel’nosti Kharringtona pri ekstruzionnoi svarke listov iz polietilena marki PEND [Application features desirability Harrington with extrusion welding sheets of polyethylene HDPE grade]. Polzunovskii al’manakh [Polzunovsky almanac]. 2012, no. 1, pp. 62–64.
[16] GOST 2789–73. Sherokhovatost’ poverkhnosti, parametry, kharakteristiki i oboznacheniia [State Standard 2789–73. Surface roughness parameters, specifications and designations]. Moscow, Standartinform publ., 1976. 10 p.
[17] GOST 24643–81. Dopuski formy i raspolozheniia poverkhnostei. Chislovye znacheniia [State Standard 24643–81. Tolerances of form and position of surfaces. Numeric values]. Moscow, Standartinform publ., 1981. 14 p.