Statistical Methods of Control of Technological Processes
Authors: Timofeev G.A., Barbashov N.N., Terentyeva A.D. | Published: 16.12.2016 |
Published in issue: #12(681)/2016 | |
Category: Technology and Process Machines | |
Keywords: automation of technological processes, precision control, rational algorithm, moving average, adaptive control |
The automation of control is one of most important and complex problems in automation of technological processes. Active control, aimed at ensuring the required quality of dimensional and other parameters of products in the process of manufacturing, automating high accuracy technological processes, and reducing losses from rejected parts and control costs, is currently the most promising. In modern manufacturing where active control of automation is used, the problem of accuracy improvement can be solved by the choice of the rational control algorithm by introducing adjustments. Methods based on the moving average appear most promising for the accuracy control since they include information on the change in the last several measured values of the controlled parameter.
References
[1] GOST R 50779.21–2004. Statisticheskie metody. Pravila opredeleniia i metody rascheta statisticheskikh kharakteristik po vyborochnym dannym. Chast’ 1. Normal’noe raspredelenie [State Standard R 50779.21–2004. Statistical methods. Determination rules and methods for calculation of statistical characteristics based on sample data. Part 1. Normal distribution]. Moscow, Gosstandart Rossii publ., 2004. 47 p.
[2] Rakhmatullin A.I., Moiseev V.S. Matematicheskie modeli i metody optimizatsii nestatsionarnykh sistem obsluzhivaniia [Mathematical models and methods of optimization of non-stationary systems of service]. Kazan’, Shkola publ., 2006. 211 p.
[3] Filonov I.P., Medvedev A.I. Veroiatnostno-statisticheskie metody otsenki kachestva v mashinostroenii [Probabilistic and statistical methods of quality assessment in engineering]. Minsk, Tesei publ., 2000. 127 p.
[4] Shishmarev V.Iu. Tekhnicheskie izmereniia i pribory [Performance measurement and instrumentation]. Moscow, Akademiia publ., 2012. 383 p.
[5] Agamirov L.V. Metody statisticheskogo analiza mekhanicheskikh ispytanii [The methods of statistical analysis of the mechanical tests]. Moscow, Intermet Inzhiniring publ., 2004. 127 p.
[6] Nevel’son M.S. Avtomaticheskoe upravlenie tochnost’iu obrabotki na metallorezhushchikh stankakh [Automatic precision processing machine tools]. Leningrad, Mashinostroenie publ., 1982. 184 p.
[7] Shachnev Iu.A. Optimal’noe pozitsionnoe upravlenie tochnost’iu protsessa obrabotki [Optimum position control accuracy of processing]. Trudy MVTU № 369. Vzaimozameniaemost’, standartizatsiia i tekhnicheskie izmereniia [Proceedings of the Moscow Higher Technical School no. 369. Interchangeability, standardization and technical measurements]. Moscow, Bauman Press, 1981, pp. 98–115.
[8] Zaitsev G.N. Upravlenie kachestvom. Tekhnologicheskie metody upravleniia kachestvom izdelii [Quality control. Technological quality management products]. St. Petersburg, Piter publ., 2014. 266 p.
[9] Shtorm R. Teoriia veroiatnostei. Matematicheskaia statistika. Statisticheskii kontrol’ kachestva [Probability. Math statistics. Statistical quality control]. Moscow, Mir publ., 1970. 368 p.
[10] Mel’nikov V.P., Smolentsev V.P., Skhirtladze A.G. Upravlenie kachestvom [Quality control]. Moscow, Akademiia publ., 2007. 345 p.
[11] Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami [Nonlinear and adaptive control of complex dynamic systems]. St. Petersburg, Nauka publ., 2000. 548 p.
[12] Ruban A.I. Metody analiza dannykh [Methods of data analysis]. Krasnoyarsk, KSTU publ., 2004. 319 p.
[13] Lobunina I.I. Razrabotka i issledovanie korreliatsionnykh metodov analiza i povysheniia tochnosti obrabotki na shlifoval’nykh stankakh s priborami aktivnogo kontrolia. Diss. kand. tekh. nauk [Development and research of methods of correlation analysis and improve the accuracy of processing on grinding machines with active control devices. Cand. tech. sci. diss.]. Leningrad, SZPI publ., 1970. 17 p.
[14] Barbashov N.N., Terent’eva A.D. Primenenie aktivnogo kontrolia dlia povysheniia tochnosti obrabotki [Application of active control to improve the accuracy of processing]. Inzhenernyi vestnik. MGTU im. N.E. Baumana [Engineering Bulletin. BMSTU]. 2015, no. 10. Available at: http://engbul.bmstu.ru/doc/814701.html (accessed 13 January 2016).
[15] GOST R 50779.27–2007 (MEK 61649:1997). Statisticheskie metody. Kriterii soglasiia i doveritel’nye intervaly dlia raspredeleniia Veibulla [IEC 61649:1997 Goodness-of-fit tests, confidence intervals and lower confidence limits for Weibull distributed data (MOD)]. Moscow, Standartinform publ., 2008. 16 p.
[16] GOST R ISO 21747–2010. Statisticheskie metody. Statistiki prigodnosti i vosproizvodimosti protsessa dlia kolichestvennykh kharakteristik kachestva [ISO 21747:2006 Statistical methods — Process performance and capability statistics for measured quality characteristics (IDT)]. Moscow, Standartinform publ., 2012. 28 p.