Dynamic Modeling of the Grain Peak Distribution on the Working Surface of Abrasive Tools when Grinding Using Transition Probabilities
Authors: Nosenko V.A., Fedotov E.V., Danilenko M.V. | Published: 20.02.2017 |
Published in issue: #2(683)/2017 | |
Category: Technology and Process Machines | |
Keywords: metal grinding, abrasive tools, grain peak, grain distribution, mathematical model, Markov’s process, wear type |
The grain peak distribution on the working surface of abrasive tools is formed by trueing. During grinding, the initial distribution changes due to wear. The wear of grain peaks is regarded as a Markov’s process with discrete time and condition; the formation of a working surface of an abrasive tool, is regarded as a superposition of Markov’s processes. Three types of wear are investigated: attrition and chipping of the grain’s peak, and grain pull-out from the cluster. The probability of wear types is determined based on the cutting force, grain and bond strength. The mathematical models of transition probabilities for determining new position of the peaks, after a single act of interaction with the machined material at each turn of the grinding wheel, are determined. The mathematical model is presented in a matrix form. The main components of this model are matrices of probability of contact of the grain peaks with the machined material, probability of wear types, transition probabilities of wear due to attrition and chipping. The distribution of the grain peaks at different periods of grinding by abrasive tool is calculated.
References
[1] Nosenko V.A. Shlifovanie adgezionno-aktivnykh metallov [Grinding adhesively-active metals]. Moscow, Mashinostroenie publ., 2000. 262 p.
[2] Salov P.M., Salov D.P. Ratsional’noe ispol’zovanie rabochei poverkhnosti abrazivnykh krugov [Rational use of the working surface of the abrasive wheels]. Cheboksary, Cheboksarskii politekhnicheskii in-t (filial) MGOU publ., 2010. 332 p.
[3] Novoselov Iu.K. Dinamika formoobrazovaniia poverkhnostei pri abrazivnoi obrabotke [Trends shaping surfaces when sanding]. Sevastopol’, SevNTU publ., 2012. 304 p.
[4] Belkin E.A. Stokhasticheskaia model’ protsessa abrazivnoi obrabotki [A stochastic model of the abrasion process]. Spravochnik. Inzhenernyi zhurnal [Handbook. An Engineering journal]. 2004, no. 3, pp. 20–25.
[5] Volkov D.I., Koriazhkin A.A. Stokhasticheskaia model’ iznosa abrazivnoi lenty pri shlifovanii lopatok kompressora GTD [Stochastic model of abrasive belt wear during grinding blades of GTE compressor]. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Solov’eva [Bulletin of Rybinsk State Aviation Technological Academy named after P.A. Solovyov]. 2011, no. 2, pp. 132–139.
[6] Grabchenko A.I., Dobroskok V.L., Fedorovich V.A. 3D modelirovanie almazno-abrazivnykh instrumentov i protsessov shlifovaniia [3D modeling of diamond abrasive tools and grinding processes]. Khar’kov, NTU KhPI publ., 2006. 364 p.
[7] Gorlenko O.A., Bishutin S.G. Model’ rabochei poverkhnosti abrazivnogo instrumenta [Model the working surface of an abrasive tool]. STIN [Russian Engineering Research]. 1999, no. 2, pp. 25–28.
[8] Gismetulin A.R., Sidorenko O.M. Modelirovanie formoobrazovaniia sherokhovatosti poverkhnosti na operatsii ploskogo shlifovaniia [Simulation of forming operations surface roughness on surface grinding]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2012, vol. 14, no. 4–3, pp. 850–855.
[9] D’iakonov A.A., Ardashev D.V., Lepikhov A.V. Imitatsionnoe modelirovanie protsessov shlifovaniia na osnove primeneniia vysokoproizvoditel’nykh klasterov i tekhnologii parallel’nykh vychislitel’nykh protsessov [Imitating modelling of processes of grinding on the basisof application high-efficiency clusters and technologies parallel computing processes]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii [Fundamental and applied problems of engineering and technology]. 2011, no. 2–2(286), pp. 29–34.
[10] Malyshev V.I., Popov A.N. Imitatsionnaia model’ protsessa shlifovaniia s vibratsionnoi pravkoi shlifoval’nogo kruga [Simulation model polished surfaces]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2010, vol. 12, no. 4, pp. 923–925.
[11] Koshin A.A., Shipulin L.V. Stokhasticheskie modeli temperaturnykh i silovykh iavlenii, proiskhodiashchikh pri shlifovanii, i ikh realizatsiia sredstvami parallel’nykh vychislenii [Temperature and force stochastic models in grinding processes and implementation of them by parallel computing]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. Matematicheskoe modelirovanie i programmirovanie [Bulletin of SUSU, Series Mathematical Modelling, Programming and Computer Software]. 2012, no. 18(277), pp. 20–31.
[12] Doman D.A., Warkentin A., Bauer R. A. Survey of recent grinding wheel topography models. International Journal of Machine Tools and Manufacture, 2006, vol. 46, pp. 343–352.
[13] Jiang J.L., Ge P.Q., Bi W.B., Zhang L., Wang D.X., Zhang Y. 2D/3D Ground Surface Topography Modeling Considering Dressing and Wear Effects in Grinding Process. International Journal of Machine Tools and Manufacture, 2013, vol. 74, pp. 29–40.
[14] Brinksmeier E., Aurich J.C., Govekar E., Heinzel C., Hoffmeister H.-W., Klocke F., Peters J., Rentsch R., Stephenson D.J., Uhlmann E., Weinert K., Wittmann M. Advances in Modeling and Simulation of Grinding Processes. CIRP Annals — Manufacturing Technology, 2006, vol. 55(2), pp. 667–696.
[15] Torrance A.A., Badger J.A. The relation between the traverse dressing of vitrified grinding wheels and their performance. International Journal of Machine Tools and Manufacture, 2000, vol. 40(12), pp. 1787–1811.
[16] Nadolny K., Plichta J., Balasz B. Application of computer modeling and simulation for designing of grinding wheels with zone-diversified structure. Management and Production Engineering Review, 2010, no. 12, vol. 1(4), pp. 38–45.
[17] Nguyen T.A., Butler D.L. Simulation of precision grinding process, part 1: generation of the grinding wheel surface. International Journal of Machine Tools & Manufacture, 2005, vol. 45, pp. 1321–1328.
[18] Stepien P.A Probabilistic model of the grinding process. Applied Mathematical Modelling, 2009, vol. 33. is. 10, pp. 3863–3884.
[19] Aurich J.C., Kirsch B. Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP Journal of Manufacturing Science and Technology, 2012, vol. 5, pp. 164–174.
[20] Marinescu I.D., Rowe B., Dimitrov B., Ohmori H. Tribology of abrasive machining processes. William Andrew Publishing, 2012. 600 p.
[21] Nosenko V.A., Fedotov E.V., Danilenko M.V. Matematicheskoe modelirovanie raspredeleniia vershin zeren pri shlifovanii v rezul’tate razlichnykh vidov iznashivaniia s ispol’zovaniem Markovskikh sluchainykh protsessov [Mathematical simulation of distribution of abrasive grains at grinding in a result of various types of wear by using Markov processes]. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal [International research journal]. 2015, no. 2–1(33), pp. 101–106.
[22] Nosenko V.A., Fedotov E.V., Savin A.I. Veroiatnostnaia model’ raspredeleniia vershin zeren na rabochei poverkhnosti shlifoval’nogo kruga [Probability distribution model vertices grains on the working surface of the grinding wheel]. STIN [Russian Engineering Research]. 2007, no. 7, pp. 12–20.
[23] Nosenko V.A., Fedotov E.V. Teoretiko-veroiatnostnaia model’ formirovaniia rabochei poverkhnosti abrazivnogo instrumenta pri shlifovanii [Theoretical and probabilistic model of the working surface of an abrasive tool for grinding]. Instrument i tekhnologii [Tools and technology]. 2003, no. 15–16, pp. 58–61.
[24] Nosenko V.A., Fedotov E.V., Nosenko S.V., Danilenko M.V. Probabilities of abrasive tool grain wearing during grinding. Journal of Machinery Manufacture and Reliability, 2009, vol. 38, no. 3, pp. 270–276.
[25] Nosenko V.A., Fedotov E.V, Danilenko M.V. Opredelenie iznosa shlifoval’nykh zeren skalyvaniem i zakona ego raspredeleniia [The estimation of wear of abrasive grifts by spalling under grinding and law of its distribution]. Trenie i smazka v mashinakh i mekhanizmakh [Friction&Lubrication in Machines and Mechanisms]. 2008, no. 8, pp. 43–48.
[26] Nosenko V.A., Fedotov E.V, Danilenko M.V. Matematicheskoe modelirovanie iznosa skalyvaniem s ispol’zovaniem Markovskikh sluchainykh protsessov [Mathematical simulation of wear grains chipping using Markov processes]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. Mashinostroenie [Bulletin of SUSU, Series Mathematical Modelling, Programming and Computer Software]. 2015, vol. 15, no. 2, pp. 20–31.
[27] Nosenko V.A., Fedotov E.V, Danilenko M.V. Ispol’zovanie tsepei Markova pri modelirovanii iznosa abrazivnogo instrumenta [Using a Markov chain in simulation of abrasive wear of the tool]. Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta [Izvestia VSTU]. 2015, no. 1(156), pp. 30–32.