An Experimental Study of Electrophysical Characteristics of Gas Flow when Bench Testing Elements of Flow Ducts in Ramjets
Authors: Rudinskiy A.V., Aleksandrov V.Yu., Yagodnikov D.A. | Published: 18.04.2017 |
Published in issue: #4(685)/2017 | |
Category: Technology and Process Machines | |
Keywords: ramjet engine, fire tests, electrophysical diagnostics, gas flow magnetometer, magnetic field strength |
This paper presents the results of an experimental study of the natural electromagnetic field of a supersonic jet of products of combustion in a ramjet engine operating on hydrocarbon fuel. An increase in the amplitude of the magnetometer signal of the gas flow when such fuels are burned is registered. The relative strength of the induced magnetic field of high-temperature products of combustion, registered by a magnetic sensor in the critical section of the ramjet combustion chamber is assessed. An increase in the amplitude of the magnetometer signal is experimentally determined on fuel combustion modes, which can be used as a diagnostic indication for monitoring the technical condition of the engine in the process of bench firing tests.
References
[1] Golovin Iu.M. Perspektivy razvitiia sistem diagnostiki i avariinoi zashchity ZhRD [Prospects of development of system diagnostics and emergency protection of rocket engines]. Fundamental’nye i prikladnye problemy kosmonavtiki [Fundamental and applied problems of cosmonautics]. 2002, no. 9, pp. 34–38.
[2] Gafurov R.A., Solov’ev V.V. Diagnostika vnutrikamernykh protsessov v energeticheskikh ustanovkakh [Diagnosis of intrachamber processes in power plants]. Moscow, Mashinostroenie publ., 1991. 271 p.
[3] Zhezheria A.P., Suvorova T.G. Osnovnye napravleniia razvitiia bortovykh sredstv avariinoi zashchity ZhRDU. Raschet, proektirovanie, konstruirovanie i ispytaniia kosmicheskikh system [Main directions of development of the on-board equipment emergency protection liquid rocket engine. Calculation, design and testing of space systems]. Raketno-kosmicheskaia tekhnika [Aerospace technology]. 2000, ser. 22, is. 1–1, pp. 238–247.
[4] Couch R.P. Detecting Abnormal Turbine Engine Deterioration Using Electrostatic Methods. Journal of Aircraft, 1978, vol. 15, no. 10, pp. 692–695.
[5] Vatazhin A.B., Golentsov D.A., Gulin A.G., Likhter V.A., Vavirovskaia S.L. Elektrostaticheskaia diagnostika sostoianiia elementov dvigatel’nykh apparatov i energeticheskikh ustroistv [Electrostatic Condition Diagnostics of Components of Aircraft Engines and Power Units]. Mir izmerenii [World of measurement]. 2012, no. 5, pp. 52–58.
[6] Kuchinskii V.V., Nikitenko A.B. Analytical methods for estimating combustion product plasma parameters and determination of temperature by measuring the plasma conductivity. Technical Physics. The Russian Journal of Applied Physics, 2010, vol. 55, no. 8, pp. 1087–1096.
[7] Kovalev V.I., Kuznetsov S.V., Kurina V.V., Pushkin N.M., Ushkov A.N., Chernykh V.I. Sistemy kontrolia i beskontaktnoi diagnostiki rabochikh protsessov pri provedenii ognevykh ispytanii ZhRD [Systems of monitoring and contactless diagnostics of working processes at carrying out fire tests of LPRE]. Trudy NPO «Energomash» [Proceedings of JSC NPO «Energomash» named by academician V.P. Glushko]. Moscow, JSC NPO Energomash named by academician V.P. Glushko publ., 2012, no. 29, pp. 328–341.
[8] Pushkin N.M., Batsev S.V., Ivanov T.V. Magnitnoe pole ionizirovannogo gazovogo potoka kak diagnosticheskii parametr pri ispytaniiakh i ekspluatatsii ZhRD [Magnetic field of the ionized gas stream as diagnostic parameter at tests and operation of LJE]. Informatsionno-tekhnologicheskii vestnik [Information technology bulletin]. 2015, vol. 5, no. 3, pp. 124–132.
[9] Kovalev V.I., Kuznetsov S.V., Kurina V.V., Pushkin N.M., Ushkov A.N., Chernykh V.I. Sistemy kontrolia i beskontaktnoi diagnostiki rabochikh protsessov pri provedenii ognevykh ispytanii ZhRD [Systems of monitoring and contactless diagnostics of working processes at carrying out fire tests of LPRE]. Trudy NPO «Energomash» [Proceedings of JSC NPO Energomash named by academician V.P. Glushko]. Moscow, JSC NPO Energomash named by academician V.P. Glushko publ., 2007, no. 25, pp. 373–394.
[10] Yagodnikov D.A., Rudinskii A.V. Modelirovanie neravnomernogo techeniia i parametrov elektromagnitnogo polia v kamere zhidkostnogo raketnogo dvigatelia pri nalichii pristenochnogo sloia [Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of Bauman MSTU]. 2015, no. 4, pp. 141–154. Available at: http://technomag.bmstu.ru/doc/763220.html (accessed 25 December 2016).
[11] Vatazhin A.B. Chastotnye kharakteristiki otritsatel’nogo koronnogo razriada v turbulentnoi strue [Frequency characteristics of negative corona discharge in a turbulent jet]. Mekhanika zhidkosti i gaza [Fluid mechanics]. 2001, no. 4(3), pp. 677–679.
[12] Rudinskii A.V., Iagodnikov D.A. Eksperimental’no-teoreticheskoe opredelenie parametrov bystrodeistviia sistemy avariinoi zashchity zhid-kostnogo raketnogo dvigatelia po elektromagnitnym svoistvam produktov [Experimental and theoretical determination of the parameters of the performance of protection systems of liquid-propellant rocket engine according to the electromagnetic properties of the products]. Teoriia i praktika sovremennogo raketnogo dvigatelestroeniia. Tr. MGTU im. N.E. Baumana [Theory and practice of modern rocket propulsion. Trudy MGTU im. N. Uh. Bauman]. 2013, no. 607, pp. 24–32.