Increasing the Stress State in the Deformation Zone for Cylindrical Parts under Surface Plastic Deformation
Authors: Zaides S.A., Ngo Cao Cuong | Published: 17.05.2017 |
Published in issue: #5(686)/2017 | |
Category: Technology and Process Machines | |
Keywords: finite element modeling, intensification of deformation process, stress state, surface plastic deformation, strain hardening, two-radius roller |
This paper presents the new kinematics of reeling rollers that provide surface plastic deformation of low rigidity rollers. Mathematical models of the hardening process are built based on the small elastic deformation theory and the finite element method. The models are used to determine the stress state depending on the shape and the kinematics of the indenter. The effect of four different schemes of deformation on the stress state is considered, that are skiving, roller burnishing, burnishing by one or two rollers that rotate about a diametrical axis. It is established that the geometry, shape, kinematics and relative position of the elements of the deforming tool are the main factors that influence the stress-strain state of the parts.
References
[1] Odintsov L.G. Uprochnenie i otdelka detalei poverkhnostnym plasticheskim deformirovaniem [Hardening and finishing details by surface plastic deformation]. Moscow, Mashinostroenie publ., 1987. 328 p.
[2] Smelianskii V.M. Mekhanika uprochneniia detalei poverkhnostnym plasticheskim deformirovaniem [Mechanics hardening of parts surface plastic deformation]. Moscow, Mashinostroenie publ., 2002. 300 p.
[3] Bliumenshtein V.Iu., Smelianskii V.M. Mekhanika tekhnologicheskogo nasledovaniia na stadiiakh obrabotki i ekspluatatsii detalei mashin [Mechanics of technological inheritance on the stages of processing and exploitation of machine parts]. Moscow, Mashinostroenie publ., 2007. 399 p.
[4] Zaides S.A., Emel’ianov V.N., Popov M.E. Deformiruiushchaia obrabotka valov [Deforming shaft machining]. Irkutsk, IrSTU publ., 2013. 452 p.
[5] Zaides S.A., Isaev A.N. Tekhnologicheskaia mekhanika osesimmetrichnogo deformirovaniia [Technological mechanics of axisymmetric deformation]. Irkutsk, IrSTU publ., 2007. 432 p.
[6] Prikhod’ko V.M., Petrova L.G., Chudina O.V. Metallofizicheskie osnovy razrabotki uprochniaiushchikh tekhnologii [Metal-physical basis for the development of hardening technologies]. Moscow, Mashinostroenie publ., 2003. 384 p.
[7] Polukhin P.I. Soprotivlenie plasticheskoi deformatsii metallov i splavov [The resistance to plastic deformation of metals and alloys]. Moscow, Metallurgiia publ., 1983. 352 p.
[8] Tushinskiy L.I. Teoriya i tekhnologiya uprochneniya metallicheskikh splavov [Theory and technology of hardening of metallic alloys]. Novosibirsk, Nauka publ., 1990. 306 p.
[9] Bukatyi A.S. Povyshenie tochnosti izgotovleniia otvetstvennykh detalei dvigatelei sredstvami staticheskogo i dinamicheskogo modelirovaniia [Improving the accuracy of manufacturing the engines critical parts by means of static and dynamic modeling]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2014, vol. 16, no. 6(2), pp. 374–377.
[10] Poliak M.S. Tekhnologiia uprochneniia [The technology of hardening]. In 2 vol. Vol. 2. Moscow, Mashinostroenie publ., 1995. 688 p.
[11] Zaides S.A., Ngo Kao Kyong. Otsenka napriazhennogo sostoianiia pri stesnennykh usloviiakh lokal’nogo nagruzheniia [Evaluation of stress state in cramped conditions of local loading]. Uprochniaiushchie tekhnologii i pokrytiia [Strengthening Technologies and Coatings]. 2016, no. 10, pp. 6–9.