Building the Strength Criterion of Carbon-Carbon Composite Material of the 4DL Type Under Triaxial Stress
Authors: Baryshev A.N., Tsvetkov S.V. | Published: 19.06.2017 |
Published in issue: #6(687)/2017 | |
Category: Technology and Process Machines | |
Keywords: carbon-carbon composite material, 4DL structure, symmetry of structure, strength criterion, invariant-polynomial formulation, tensor-polynomial formulation |
Three-dimensional reinforced carbon-carbon composite materials are used for manufacturing products that are usually subjected to triaxial stress during operation. Thus, the development of the anisotropic strength criterion for this class of materials under triaxial stress becomes an important task. Carbon-carbon composite material of the 4DL type has a frame consisting of four families of straight-lined reinforced elements. The structural analysis shows that with regards to the symmetry properties, the material belongs to the hexagonal class D6. The tensor-polynomial and invariant-polynomial formulations of the anisotropic strength criterion are analysed. It is shown that for the materials of the Dn (4 < n < ∞) symmetry class, the tensor-polynomial criterion of the second degree does not describe strength properties. For carbon-carbon composite material of the 4DL type, the degree of this criterion should not be lower than four. The authors specify the requirements to the invariant-polynomial formulation of the strength criterion that are determined by the structure symmetry of the carbon-carbon composite material of the 4DL type.
References
[1] Gol’denblat I.I., Kopnov V.A. Kriterii prochnosti i plastichnosti kompozitsionnykh materialov [Criteria of strength and plasticity of composite materials]. Moscow, Mashinostroenie publ., 1968. 192 p.
[2] Fenomenologicheskie kriterii razrusheniia anizotropnykh sred. Mekhanika kompozitsionnykh materialov [Phenomenological criteria of fracture of anisotropic media. Mechanics of composite materials]. Vol. 2. Ed. Vu E.M., Sendetski Dzh. Moscow, Mir publ., 1978, pp. 401–491.
[3] Hinton M.J., Kaddour A.S. Triaxial test results for fibre-reinforced composites: The Second World-Wide Failure Exercise benchmark data. Journal of Composite Materials, 2013, vol. 47, is. 6–7, pp. 653–678.
[4] Zand B., Butalia T.S., Wolfe W.E., Schoeppner G.A. A strain energy based failure criterion for nonlinear analysis of composite laminates subjected to triaxial loading. Journal of Composite Materials, 2012, vol. 46, is. 19–20, pp. 2515–2537.
[5] Zhou Y.X., Huang Z-M. A bridging model prediction of the ultimate strength of composite laminates subjected to triaxial loads. Journal of Composite Materials, 2012, vol. 46, is. 6–7, pp. 2343–2378.
[6] Rotem A. The Rotem failure criterion for fibrous laminated composite materials: three dimensional loading case. Journal of Composite Materials, 2012, vol. 46, is. 6–7, pp. 2379–2388.
[7] Zhang D., Xu L., Ye J. Prediction of failure envelopes and stress strain curves of fiber composite laminates under triaxial loads: comparison with experimental results. Journal of Composite Materials, 2013, vol. 47, is. 6–7, pp. 763–776.
[8] Doudican B.M., Zand B., Amaya P., Butalia T.S., Wolfe W.E., Schoeppner G.A. Strain energy based failure criterion: comparison of numerical predictions and experimental observations for symmetric composite laminates subjected to triaxial loading. Journal of Composite Materials, 2013, vol. 47, is. 6-7, pp. 848–866.
[9] Gu Z., Gao Q., Zhang W. Nonlinear bimodulus model and strength criterion of 3D carbon-carbon material. Journal of Composite Materials, 1989, vol. 23, is. 10, pp. 988–996.
[10] Sirotin Iu.I., Shaskol’skaia M.P. Osnovy kristallofiziki [The basics of kristallofiziki]. Moscow, Nauka publ., 1975. 680 p.
[11] Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivlenie polimernykh i kompozitnykh materialov [The resistance of polymer and composite materials]. Riga, Zinatne publ., 1980. 572 p.
[12] Vekilov Iu.Kh., Chernikov M.A. Kvazikristally [Quasicrystals]. Uspekhi fizicheskikh nauk [Physics-Uspekhi]. 2010, vol. 180, no. 6, pp. 561–586, doi: https://doi.org/10.3367/UFNr.0180.201006a.0561.
[13] Sun C.T., Zhou S.G. Failure of quasi-isotropic composite laminates with free edges. Journal of Reinforced Plastics and Composites, 1988, vol. 7, pp. 515–557.
[14] N’iuton I. Matematicheskie raboty. Perechislenie krivykh tret’ego poriadka [Mathematical work. Enumeration of curves of third order]. Moscow, Knizhnyi dom «Librokom» publ., 2012, pp. 194–209.
[15] Spenser E. Teoriia invariantov [Invariant theory]. Moscow, Mir publ., 1974. 58 p.
[16] Zinov’ev P.A., Tsvetkov S.V. Invariantno-polinomial’nyi kriterii prochnosti anizotropnykh materialov [The invariant-polynomial criterion of strength of anisotropic materials]. Izvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela [Mechanics of Solids]. 1994, no. 4, pp. 140–147.
[17] Grin A., Adkins Dzh. Bol’shie uprugie deformatsii i nelineinaia mekhanika sploshnoi sredy [Large elastic deformations and nonlinear continuum mechanics]. Moscow, Mir publ., 1965. 455 p.