Automation of Decision-Making When Designing the Saw Unit of a Multirip Bench Using the Multiple-Criteria Approach
Authors: Gavryushin S.S., Nguyen C.D., Dang H.M., Phung V.B. | Published: 19.12.2017 |
Published in issue: #12(693)/2017 | |
Category: Technology and Process Machines | |
Keywords: product lifecycle management (PLM), decision-making, multi-criteria design, visual interactive analysis method, saw unit, multirip bench |
This article examines the multiple-criteria design of the saw unit of a multirip bench in the framework of the product lifecycle management (PLM) concept. Based on the requirements to the machine for various stages of its life cycle, a mathematical model of the saw unit is created that includes eight control parameters, nine functional constraints and nine quality criteria. To support decision-makers, a visual interactive analysis method (VIAM) is developed that is based on the ideas of classical decision-making methods. Using VIAM, it is possible to define and control the zone of acceptable values of the quality criteria, evaluate their mutual influence and indicate the rational criteria constraints, under which there are agreed design options. With the help of the proposed method, rational agreed design solutions for the saw unit are found that meet the requirements of various multirip bench specialists. Recommendations for further improvement of the multirip bench are given. The results of calculations in NX Nastran confirm the advantages of the rational schemes of the saw unit developed with the help of VIAM.
References
[1] Eigner M., Stelzer R. Product Lifecycle Management. Berlin, Heidelberg, Springer-Verlag, 2009. 434 p.
[2] Solomentsev Iu.M. Osnovy avtomatizatsii mashinostroitel’nogo proizvodstva [Basics of automation engineering production]. Moscow, Vysshaia shkola publ., 1999. 312 p.
[3] Prokopov V.S. Razrabotka metodiki chislennogo analiza dinamicheskikh kharakteristik mnogopil’nogo stanka s krugovym postupatel’nym dvizheniem derevorezhushchikh poloten. Diss. kand. tekhn. nauk [Development of technique for numerical analysis of dynamic characteristics of multi-trip machine with circular translational motion of wood-cutting blades canvases. Cand. tech. sci. diss.]. Moscow, 2013. 205 p.
[4] Blokhin M.A. Issledovanie, razrabotka i sozdanie lesopil’nogo oborudovaniia s krugovym postupatel’nym dvizheniem pil’nykh poloten. Diss. dokt. tekh. nauk [Research, development and creation of sawmill equipment with a circular reciprocating saw blades. Dr. tech. sci. diss.]. Moscow, 2015. 313 p.
[5] Fung V.B., Prokopov V.S., Gavriushin S.S. Issledovanie ustoichivosti ploskoi formy izgiba poloten mnogopil’nogo stanka s krugovym postupatel’nym dvizheniem [Research of stability of flat bending shape of saw blade of gang saw with circular translation movement]. Vestnik mashinostroeniia [Russian Engineering Research]. 2017, no. 7, pp. 83–88.
[6] Fung V.B., Gavriushin S.S., Blokhin M.A. Metodika uravnoveshivaniia pil’nogo bloka lesopil’nogo stanka novogo tipa [Method trim saw block sawing machine of a new type]. Fundamental’nye i prikladnye zadachi mekhaniki. Tez. dokl. Mezhdunar. nauch. konf. [Fundamental and applied problems of mechanics. Abstracts of the International scientific conference]. Moscow, 24–27 October 2017, Moscow, Bauman Press, 2017. 143 p.
[7] Fung V.B., Dang M.Kh., Gavriushin S.S. Razrabotka matematicheskoi modeli dlia protsessa upravleniia zhiznennym tsiklom mnogopil’nogo stanka novogo tipa [Development of Mathematical Model for Lifecycle Management Process of New Type of Multirip Saw Machine]. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication]. 2017, no. 2, pp. 87–109. Available at: http://technomag.edu.ru/jour/article/view/958 (accessed 15 May 2017).
[8] Gavriushin S.S., Blokhin M.A., Fung V.B. Analiz lesopil’nogo stanka s ispol’zovaniem virtual’noi parametricheskoi modeli [Analysis Sawmill Machine Using a Virtual Parametric Model]. Nauka i obrazovani. MGTU im. N.E. Baumana [Science and Education. BMSTU]. 2014, no. 12, pp. 128–136. Available at: http://technomag.bmstu.ru/doc/743119.html (accessed 15 May 2017).
[9] Singiresu S.Rao. Engineering optimization theory and practice. New York, John Wiley & Sons, Inc., 2009. 830 p.
[10] Moiseev N.N. Chislennye metody v teorii optimal’nykh system [Numerical methods in theory of optimal systems]. Moscow, Nauka publ., 1971. 424 p.
[11] Eschenauer H., Koski J., Osyczka A. Multicriteria Design Optimization, Procedures and Applications. Berlin, Springer-Verlag, 1990. 482 p.
[12] Papageorgiou E., Eres M.H., Scanlan J. Value modelling for multi-stakeholder and multi-objective optimization in engineering design. Journal of Engineering Design, 2016, vol. 27, is. 10, pp. 697–724, doi: 10.1080/09544828.2016.1214693.
[13] Shidpour H., Da Cunha C., Bernard A. Group multi-criteria design concept evaluation using combined rough set theory and fuzzy set theory. Expert Systems with Applications, 2016, vol. 64, pp. 633–644.
[14] Sobol’ I.M., Statnikov R.B. Vybor optimal’nykh parametrov v zadachakh so mnogimi kriteriiami [The choice of optimal parameters in tasks with many criteria]. Moscow, Drofa publ., 2006. 176 p.
[15] Statnikov R.B., Matusov I.B. Inadmissible, admissible, and optimal solutions in design problems. Journal of Machinery Manufacture and Reliability, 2012, vol. 41, no. 4, pp. 270–278.
[16] Podinovskii V.V., Gavrilov V.M. Optimizatsiia po posledovatel’no primeniaemym kriteriiam [Optimization on sequentially applied criteria]. Moscow, Sovetskoe radio publ., 1975. 192 p.
[17] Vagner G. Osnovy issledovaniia operatsii [Fundamentals of operations research]. In 3 vol. Moscow, Mir publ., 1972.
[18] Yotaro Hatamura. Decision-Making in Engineering Design. London, Springer-Verlag London Limited, 2006. 275 p.
[19] Fung Van Bin’. Avtomatizatsiia i upravlenie protsessom priniatiia reshenii pri mnogokriterial’nom proektirovanii pil’nogo bloka lesopil’nogo stanka. Diss. kand. tekhn. nauk [Automation and management of decision-making for multi-objective design of the sawing block sawing machine. Cand. tech. sci. diss.]. Moscow, Bauman Press, 2017. 157 p.
[20] Goncharov P.S., Artamonov I.A., Khalitov T.F., Denisikhin S.V., Sotnik D.E. NX Advanced Simulation. Inzhenernyi analiz [NX Advanced Simulation. Engineering analysis]. Moscow, DKM Press publ., 2012. 504 p.