Spacecraft Motion in an Ultra-Low Lunar Orbit under Lunar Gravitational Anomalies
Authors: Arinchev S.V. | Published: 26.01.2022 |
Published in issue: #2(743)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: lunar gravitation anomalies, mass concentration, pseudo-random number, gravity-anomaly noise |
The study centers around the interdisciplinary problem: gravimetry and celestial mechanics. A spacecraft is aimed at a flight from one point of the Moon to another at an altitude of 1 km in a flat circular orbit. Under gravitational anomalies, the orbit deviates from a circular one, acquiring a spatial character. To account for gravitational anomalies, we introduce the mass concentration method, according to which the resulting gravitational field is a superposition of elementary fields of individual mass concentrations (mascons). The elementary field of an individual mascon has four parameters: latitude, longitude, depth, and positive or negative mass. Each parameter of the mascon is associated with a pseudo-random variable with a uniform distribution law in a given interval. The pseudo-random values ??are generated by the Wichmann-Hill PRNG. The problem under consideration is reduced to the Cauchy problem with initial conditions. Under gravitational anomalies, a few orbits after the launch, the spacecraft falls onto the lunar surface. The study shows that one orbit is enough for a safe flight. The spacecraft moves in the specified ultra-low orbit under gravity-anomaly noise. Anomalous gravitational overload is 0.1 m/sec2.
References
[1] Kuz’min V.I. Gravimetriya [Gravimetry]. Novosibirsk, Sibirskaya Gosudarstvennaya Geodezicheskaya Akademiya Publ., 2011. 163 p. (In Russ.).
[2] Krylov V.I. Osnovy teorii dvizheniya ISZ. Chast’ vtoraya: vozmushchennoe dvizhenie [Fundamentals of earth satellite motion theory. Part 2: disturbed motion]. Moscow, MIIGAiK Publ., 2016. 67 p. (In Russ.).
[3] Chuykova N.A., Nasonova L.L., Maksimova T.G. Determination of global density inhomogeneities and stresses inside the moon. Astronomicheskiy vestnik. Issledovaniya solnechnoy sistemy, 2020, vol. 54, no. 4, pp. 325–336, doi: https://doi.org/10.31857/S0320930X20040040 (in Russ.). (Eng. version: Sol. Syst. Res., 2020, vol. 54, no. 4, pp. 295–306, doi: https://doi.org/10.1134/S0038094620040048)
[4] Antonova G.A. Simulating the signal of a torsion balance gravimeter. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2017, no. 11, doi: http://dx.doi.org/10.18698/2541-8009-2017-11-189 (in Russ.).
[5] Rybakov E.A. Kompleksirovanie apparatury potrebitelya global’nykh navigatsionnykh sputnikovykh sistem s apparaturoy korrelyatsionno-ekstremal’noy navigatsii po gravitatsionnomu polyu Zemli. Diss. kand. tekh. nauk [complexing equipment of global positioning system user and equipment of correlative extremal navigation using Earth gravity field. Kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2020. 138 p. (In Russ.).
[6] Fermi M., Gregnanin M., Mazzolena M., et al. The lunar gravity mission MAGIA: preliminary design and performances. Exp. Astron., 2011, vol. 32, pp. 1–18, doi: https://doi.org/10.1007/s10686-010-9188-z
[7] Michael W.H.Jr., Blackshear W.Th., Gapcynski J.P. Results on the mass and the gravitational field of the moon as determined from dynamics of the lunar satellites. In: Dynamics of satellites. Springer, 1969, pp. 42–56, doi: https://doi.org/10.1007/978-3-642-99966-6_9
[8] Pugacheva S.G. The study of the gravitational field of the moon, space probes to Grail. Sovremennaya nauka. Aktual’nye problemy teorii i praktiki. Ser. Estestvennye i tekhnicheskie nauki [Modern Science: actual problems of theory and practice. Ser. Natural and Technical Sciences], 2015, no. 12, pp. 23–29. (In Russ.).
[9] Kozlov P.G., Smashnyy V.V., Titov E.V. Development and verification of a mathematical model for the motion of a lunar artificial satellite. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2018, no. 2, pp. 27–38. (In Russ.).
[10] Carvalho J.P.S., Moraes R.V., Prado A.F.B.A. Nonsphericity of the moon and near sun-synchronous polar lunar orbits. Math. Probl. Eng., 2009, vol. 2009, art. 740460, doi: https://doi.org/10.1155/2009/740460
[11] Goncalves L.D., Rocco E.M., Moraes R.V. et al. Effects of the individual terms of the lunar potential in the motion of satellites around the moon. IJTAM, 2016, vol. 1, pp. 20–29. http://www.iaras.org/iaras/journals/ijtam
[12] Popad’yev V.V., Soroka A.I., Polubekhin A.I., et al. The possibilities of correction parameters of onboard inertial navigation systems for aircraft based on gravimetric maps of the Earth. Nauchnyy vestnik MGTU GA [Civil Aviation High Technologies], 2015, no. 222, pp. 90–97. (In Russ.).
[13] Circi C., Teofilatto P. On the dynamics of weak stability boundary lunar transfers. Celest. Mech. Dyn. Astr., 2001, vol. 79, no. 1, pp. 41–72, doi: https://doi.org/10.1023/A:1011153610564
[14] Zapletin M.P. Optimal’nye perelety kosmicheskogo apparata mezhdu poverkhnost’yu Luny i orbitami ee iskusstvennykh sputnikov. Avtoref. diss. … kand. fiz.-mat. nauk [Optimum spacecraft flights from moon surface t orbits of its artificial satellites. Abs. kand. tech. phys.-math. sci. diss.]. Moscow, Lomonosov MSU Publ., 1993. 12 p. (In Russ.).
[15] Wichmann B., Hill D. Algorithm AS 183. An efficient and portable pseudo-random number generator. J. R. Stat. Soc. Ser. C Appl. Stat., 1982, vol. 31, no. 2, pp. 188–190, doi: https://doi.org/10.2307/2347988
[16] Tselousova A.A., Trofimov S.P., Shirobokov M.G. [Station-keeping in high circular polar orbits around the moon]. XLIV Akademicheskie chteniya po kosmonavtike. Sb. tez. dok. [Abs. XLIV Academic Readings on Cosmonautics]. Moscow, Bauman MSTU Publ., 2020, pp. 280–282. (In Russ.).
[17] Kozlov P.G., Smashnyy V.V., Titov E.V. A study of the perturbed motion characteristics for a lunar artificial satellite. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2018, no. 2, pp. 39–52.
[18] Du Chunzhuy, Starinova O.A. Low selenocentric orbits stability analysis. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2020, no. 10, doi: http://dx.doi.org/10.18698/2308-6033-2020-10-2023 (in Russ.).
[19] Goncalves L.D., Rocco E.M., Moraes R.V. Analysis of the influence of orbital disturbances applied to an artificial lunar satellite. J. Phys.: Conf. Ser., 2015, vol. 641, art. 012028, doi: https://doi.org/10.1088/1742-6596/641/1/012028