Qualitative Effects of Vibrations of Reinforcing Ring Elements with Attached Mass, as a Special Case of an Infinitely Long Thin Circular Cylindrical Shell
Authors: Seregin S.V. | Published: 27.01.2017 |
Published in issue: #1(682)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: thin infinitely long shell, isolated ring, attached mass, dynamic asymmetry, flexural and radial vibrations, natural frequencies and forms, splitting the spectrum |
This paper investigates the effect of a small attached mass on the frequency and form of flexural vibrations of an infinitely long circular cylindrical shell-ring, under plane deformation conditions. The equations of motion for transverse vibrations are used as a mathematical model. These equations are obtained from analogous equations of the Donnell–Mushtari–Vlasov theory of shallow shells. A new approach to the construction of a mathematical model is proposed by the author. This approach suggests that the attached mass in the linear formulation leads to the interaction between the conjugate and the radial flexural forms of vibrations. The new system of dynamic equations obtained by the Bubnov-Galerkin method suggests that such additional inclusions lead to the connectedness and interaction of low-frequency flexural vibrations of the shell with high-frequency radial vibrations. In this case the radial vibrations act as an additional inertial connection between the conjugate flexural forms. It is shown that the radial vibrations are inconspicuous. However, by taking them into account, it is possible to arrive at a qualitative conclusion about the impact of the wave formation parameter on the smaller of the split eigenfrequencies. This parameter depends on the relative thickness of the ring. This means that the effect of reducing the smaller of the split eigenfrequencies of predominantly flexural vibrations depends not only on the attached mass, as it is assumed at the moment, but also on the geometric and wave parameters of the shell. It is established that at certain values of the wave formation parameter, the frequencies and amplitudes of predominantly radial vibrations can be commensurate with the frequencies and amplitudes of predominantly flexural vibrations. This means that when the shell is subjected to dynamic impact, the resonance effect may occur not only at frequencies of the flexural vibrations, as follows from the known analytical solutions, but also at frequencies corresponding to the radial vibrations. The results and conclusions obtained are in qualitative agreement with the available experimental data and numerical calculations. These results can be generalized to the case of vibrations of thin circular cylindrical shells of finite length that carry attached mass.
References
[1] Leonenko D.V., Starovoitov E.I. Impul’snye vozdeistviia na trekhsloinye krugovye tsilindricheskie obolochki v uprugoi srede [Impulsive Action on the Three-layered Circular Cylindrical Shells in Elastic Media]. Izvestiia Saratovskogo universiteta. Novaia seriia. Seriia: Matematika. Mekhanika. Informatika [Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics]. 2015, vol. 15, no. 2, pp. 202–209.
[2] Zhuravleva E.N., Gabbasov R.F., Nguen Kh.A., Khoang T.A. Chislennoe reshenie tsiklicheski simmetrichnoi zadachi po raschetu krugovoi tsilindricheskoi obolochki [Numerical Solution of Cyclically Symmetric Problem for Calculation of a Cylindrical Shell]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 6, pp. 10–14.
[3] Spasskaia M.V., Treshchev A.A. Izgib krugovoi tsilindricheskoi obolochki iz anizotropnogo raznosoprotivliaiushchegosia materiala [Bending of the circular cylindrical shell made of anisotropic different resistant material]. Stroitel’stvo i rekonstruktsiia [Building and reconstruction]. 2015, no. 3(59), pp. 53–59.
[4] Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Sobstvennye kolebaniia i ustoichivost’ funktsional’no-gradientnykh tsilindricheskikh obolochek vrashcheniia pod deistviem mekhanicheskikh i temperaturnykh nagruzok [Natural vibrations and stability of functionally graded cylindrical shells under mechanical and thermal loads]. Mekhanika kompozitsionnykh materialov i konstruktsii [Journal on Composite Mechanics and Design]. 2015, vol. 21, no. 2, pp. 206–220.
[5] Boiarskaia M.L., Filippov S.B. Ustoichivost’ tsilindricheskoi obolochki, podkreplennoi shpangoutami s tavrovym poperechnym secheniem [Buckling of cylindrical shell stiffened by rings with T-shaped cross-section]. Vestnik Sankt-Peterburgskogo universiteta. Seriia 1: Matematika. Mekhanika. Astronomiia [Vestnik of the St. Petersburg University: Mathematics]. 2015, vol. 2, no. 3, pp. 431–442.
[6] Zelinskaya A.V., Tovstik P.E. Buckling of an axially compressed transversely isotropic cylindrical shell with a weakly supported curvilinear edge. Vestnik of the St. Petersburg University: Mathematics, 2015, vol. 48, no. 2, pp. 109–118.
[7] Iakovlev S.S., Remnev K.S. Uslovie poteri ustoichivosti v vide gofrov pri obzhime trubnoi zagotovki iz anizotropnogo materiala [Buckling of an anisotropic round billet subject to external overpressure]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, no. 8(653), pp. 20–27.
[8] Adamovich I.A., Filippov S.B. Optimizations of parameters of a stiffened cylindrical shell. Vestnik of the St. Petersburg University: Mathematics, 2015, vol. 48, no. 2, pp. 102–108.
[9] Spasskaia M.V., Treshchev A.A. Termouprugoe deformirovanie tsilindricheskoi obolochki iz anizotropnogo raznosoprotivliaiushchegosia materiala [Thermoelastic deformation of the cylindrical shell made of anisotropic different resistant material]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ia. Iakovleva. Seriia: Mekhanika predel’nogo sostoianiia [Bulletin of the Chuvash State Pedagogical University named after I. Yakovlev. Series: Mechanics limit state]. 2015, no. 1(23), pp. 65–74.
[10] Mochalin A.A. Parametricheskie kolebaniia neodnorodnoi krugovoi tsilindricheskoi obolochki peremennoi plotnosti pri razlichnykh kraevykh usloviiakh [The Parametric Oscillations of Heterogeneous Round Cylindrical Shell of Variable Density on Different Boundary Conditions]. Izvestiia Saratovskogo universiteta. Novaia seriia. Ser. Matematika. Mekhanika. Informatika [Izvestiya of Saratov University. New Series. Ser. Mathematics. Mechanics. Informatics]. 2015, vol. 15, no. 2, pp. 210–215.
[11] Netrebko A.V., Pshenichnov S.G. Nekotorye zadachi dinamiki lineino-viazkouprugikh tsilindricheskikh obolochek konechnoi dliny [Some dynamic problems for linearly viscoelastic cylindrical finite length shells]. Problemy prochnosti i plastichnosti [Journal Problems of Strength and Plasticity]. 2015, vol. 77, no. 1, pp. 14–22.
[12] Kuznetsova E.L., Leonenko D.V., Starovoitov E.I. Natural vibrations of three-layer circular cylindrical shells in an elastic medium. Mechanics of Solids, 2015, vol. 50, no. 3, pp. 359–366.
[13] Bochkarev S.A., Lekomtsev S.V. Sobstvennye kolebaniia chastichno zapolnennykh zhidkost’iu nekrugovykh tsilindricheskikh obolochek s uchetom pleskaniia svobodnoi poverkhnosti [Natural vibrations of non-circular cylindrical shells partially filled with fluid with sloshing of free surface]. Vychislitel’naia mekhanika sploshnykh sred [Computational continuum mechanics]. 2014, vol. 7, no. 4, pp. 471–480.
[14] Kozar’ D.M., Krauin’sh P.Ia. Opredelenie sobstvennoi chastoty kolebanii uprugoi obolochki i ee prisoedinennoi massy [Determination of the natural frequency of the elastic membrane and its associated mass fluctuations]. Teoreticheskie i prikladnye aspekty sovremennoi nauki [Theoretical and applied aspects of modern science]. 2014, no. 1, pp. 21–29.
[15] Kirpichnikov V.Iu., Koshcheev A.P., Savenko V.V. Eksperimental’noe issledovanie vibratsii i zvukoizlucheniia obolochki s raspredelennoi po uchastku ee poverkhnosti massoi [Experimental study of vibrations and acoustic emission of shell with the mass distributed throughout an area on its surface]. Trudy TsNII im. akad. A.N. Krylova [Proceedings of Krylov Shipbuilding Research Institute]. 2014, no. 80(364), pp. 53–64.
[16] Polunin A.I. Matematicheskoe modelirovanie vliianiia tochechnykh mass na dinamiku vrashchaiushcheisia obolochki s oporami [Mathematical modeling of the dynamics of point masses on a rotating shell with supports]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova [Bulletin of the Belgorod State Technological University named after V.G. Shukhov]. 2010, no. 3, pp. 197–199.
[17] Skleznev A.A. Vliianie tekhnologicheskikh otverstii na sobstvennye chastoty kolebanii setchatykh kompozitnykh konstruktsii letatel’nykh apparatov [Influence of technological hole self-oscillation frequency mesh composite structures of aircraft]. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo [Bulletin of the Gomel State Technical University named after P.O. Sukhoi]. 2012, no. 4(51), pp. 3–10.
[18] Antuf’ev B.A. Vibrations of a shell with the discretely attached dynamic subsystem. Russian Aeronautics, 2008, vol. 51, no. 3, pp. 227–231.
[19] Antuf’ev B.A., Smiyan A.B. Experimental study of strain for plates discretely connected to a cylindrical shell. Russian Aeronautics, 2012, vol. 55, no. 4, pp. 339–342.
[20] Antuf’ev B.A., Konovalov A.V. Effect of heating on the dynamic behavior of a shell with partially damaged thermal insulation. Russian Aeronautics, 2014, vol. 57, no. 1, pp. 1–5.
[21] Kubenko V.D., Koval’chuk P.S., Krasnopol’skaia T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek [Nonlinear interaction of forms of flexural vibrations of cylindrical shells]. Kiev, Moscow, Naukova dumka publ., 1984. 220 p.
[22] Seregin S.V., Leizerovich G.S. Vliianie prisoedinennoi massy na dinamicheskie kharakteristiki tonkoi obolochki [Influence of the added mass on the dynamic characteristics of thin shells]. Problemy mashinostroeniia i avtomatizatsii [Engineering and Automation Problems]. 2015, no. 4, pp. 83–89.
[23] Andreev L.V., Stankevich A.I., Dyshko A.L., Pavlenko I.D. Dinamika tonkostennykh konstruktsii s prisoedinennymi massami [The dynamics of thin-walled structures with attached masses]. Moscow, MAI publ., 2012. 214 p.
[24] Seregin S.V. Issledovanie dinamicheskikh kharakteristik obolochek s otverstiiami i prisoedinennoi massoi [Investigation of dynamic characteristics of shells with holes and added mass]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 4, pp. 52–58. Doi: 10.22227/1997-0935.2014.4.52-58.
[25] Seregin S.V. Vliianie prisoedinennogo tela na chastoty i formy svobodnykh kolebanii tsilindricheskikh obolochek [Influence of body attached to the frequencies and forms of free oscillations of cylindrical shells]. Stroitel’naia mekhanika i raschet sooruzhenii [Building mechanics and calculation of constructions]. 2014, no. 3, pp. 35–39.
[26] Leizerovich G.S., Prikhod’ko N.B., Seregin S.V. O vliianii maloi prisoedinennoi massy na kolebaniia raznotolshchinnogo krugovogo kol’tsa. Stroitel’stvo i rekonstruktsiia [Building and reconstruction]. 2013, no. 4, pp. 38–42.
[27] Leizerovich G.S., Prikhod’ko N.B. Seregin S.V., O vliianii maloi prisoedinennoi massy na rasshcheplenie chastotnogo spektra krugovogo kol’tsa s nachal’nymi nepravil’nostiami [On the influence of small weight attached to the splitting of the frequency spectrum of a circular ring with initial irregularities]. Stroitel’naia mekhanika i raschet sooruzhenii [Building mechanics and calculation of constructions]. 2013, no. 6, pp. 49–51.
[28] Seregin S.V. Chislennoe i analiticheskoe issledovanie svobodnykh kolebanii krugovykh tsilindricheskikh obolochek, nesushchikh prisoedinennuiu massu, lineino raspredelennuiu vdol’ obrazuiushchei [Numerical and analytical investigation of free vibrations of circular cylindrical shells with added mass linearly distributed along generatrix]. Vychislitel’naia mekhanika sploshnykh sred [Computational continuum mechanics]. 2014, vol. 7, no. 4, pp. 378–384. Doi: 10.7242/1999-6691/2014.7.4.36.
[29] Seregin S.V. Vliianie ploshchadi kontakta i velichiny lineino raspredelennoi i sosredotochennoi massy s krugovoi tsilindricheskoi obolochkoi na chastoty i formy svobodnykh kolebanii [Influence of the contact area and value of the linearly distributed and concentrated mass with a circular cylindrical shell on the frequency and modes of natural oscillations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 7, pp. 64–74. Doi: 10.22227/1997-0935.2014.7.64-74.
[30] Seregin S.V. Ob effekte rasshchepleniia izgibnogo chastotnogo spektra tonkikh krugovykh tsilindricheskikh obolochek, nesushchikh prisoedinennuiu massu [On the effect of splitting the frequency spectrum of the bending of thin circular cylindrical shells, bearing the associated mass]. Stroitel’naia mekhanika i raschet sooruzhenii [Building mechanics and calculation of constructions]. 2014, no. 6(257), pp. 59–61.
[31] Seregin S.V. Svobodnye kolebaniia tonkoi krugovoi tsilindricheskoi obolochki, oslablennoi otverstiem [Free Vibrations of a Thin Circular Cylindrical Shell Weakened by a Hole]. Izvestiia vysshikh uchebnykh zavedenii. Aviatsionnaia tekhnika [Russian Aeronautics]. 2015, no. 3, pp. 9–13. Doi: 10.3103/S1068799815030022.
[32] Palamarchuk V.G. Svobodnye kolebaniia sistemy, sostoiashchei iz rebristoi tsilindricheskoi obolochki i absoliutno tverdogo tela [Free oscillations of a system consisting of a ribbed cylindrical shell and an absolutely rigid body]. Prikladnaia mekhanika [International Applied Mechanics]. 1978, vol. 14, no. 4, pp. 56–62.
[33] Kononenko V.O., Palamarchuk V.G., Nosachenko A.M. Svobodnye kolebaniia rebristoi tsilindricheskoi obolochki s prisoedinennoi massoi [Free oscillations of ribbed cylindrical shell with the attached weight]. Prikladnaia mekhanika [International Applied Mechanics]. 1977, 13, no. 1, pp. 40–46.
[34] Zhigalko Iu.P., Shalabanov A.K. Vliianie vneshnego dempfirovaniia na chastoty kolebanii plastin i obolochek, nesushchikh sosredotochennye massy [Influence of external damping on the frequency of vibrations of plates and shells, carrying concentrated masses]. Issledovaniia po teorii plastin i obolochek [Investigations in the theory of plates and shells]. 1975, is. 11, pp. 261–269.
[35] Vol’mir A.S. Nelineinaia dinamika plastin i obolochek [Nonlinear dynamics of plates and shells]. Moscow, Nauka publ., 1972. 431 p.
[36] Evensen D.A. Nonlinear flexural vibrations of thin circular rings. Trans ASME. J. Appl. Mech., 1965, vol. 33, no. 3, pp. 553–560.
[37] Biderman V.L. Teoriia mekhanicheskikh kolebanii [The theory of mechanical vibrations]. Moscow, Vysshaia shkola publ., 1980. 408 p.
[38] Basarab M.A., Ivoilov M.A., Matveev V.A. Optimizatsiia balansirovki volnovogo tverdotel’nogo giroskopa s pomoshch’iu neironnoi seti khopfilda [Optimization of solid-state wave gyro balancing with the use of the Hopfield neural network]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2012, no. 7, pp. 289–298. Available at: http://technomag.bmstu.ru/doc/416090.html (accessed 12 February 2016).
[39] Matveev V.A., Lunin B.S., Basarab M.A., Chumankin E.A. Balansirovka metallicheskikh rezonatorov volnovykh tverdotel’nykh giroskopov nizkoi i srednei tochnosti [Balancing of metallic resonators of cylindrical vibratory gyroscopes for low and medium accuracy applications]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2013, no. 6, pp. 251–266. Available at: http://technomag.bmstu.ru/doc/579179.html (accessed 12 February 2016).
[40] Matveev V.A., Lipatnikov V.I., Alekhin A.V. Proektirovanie volnovogo tverdotel’nogo giroskopa [Designing a hemispherical resonator gyro]. Moscow, Bauman Press, 1998. 168 р.
[41] Abakumov A.I., Egunov V.V., Mokhov V.N., Pevnitskaia A.V., Solov’ev V. P., Uchaev A.A. Povedenie sfericheskoi obolochki s prisoedinennoi massoi pri impul’snom nagruzhenii [The behavior of a spherical shell with an attached weight under impact loading]. Prikladnye problemy prochnosti i plastichnosti [Applied problems of strength and ductility]. Gor’kii, 1984, no. 1, pp. 109–113.
[42] Seregin S.V. Dinamika tonkikh tsilindricheskikh obolochek s prisoedinennoi massoi [Dynamics of thin cylindrical shells with added mass]. Komsomolsk-na-Amure, KnASTU publ., 2016. 175 p.
[43] Seregin S.V. Svobodnye izgibno-radial’nye kolebaniia tonkoi krugovoi tsilindricheskoi obolochki, nesushchei prisoedinennuiu massu [Free flexural radial vibrations of a thin circular cylindrical shell bearing added mass]. Vestnik MGSU [Vestnik MGSU]. 2014, no. 11, pp. 74–81. Doi: 10.22227/1997-0935.2014.11.74-81.
[44] Seregin S.V. Leizerovich G.S. Svobodnye kolebaniia beskonechno dlinnoi krugovoi tsilindricheskoi obolochki s nachal’nymi nepravil’nostiami i maloi prisoedinennoi massoi [Free vibration of infinite length circular cylindrical shell with initial imperfections and a small added mass]. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta [Scholarly Notes of Komsomolsk-na-Amure State Technical University]. 2014, vol. 1, no. 4(20), pp. 36–43.