Extension of Kirchhoff’s Kinetic Analogy to Cylindrical Springs Carrying Distributed Loads
Authors: Sorokin F.D., Badikov R.N., Zhou Su | Published: 24.03.2017 |
Published in issue: #3(684)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: helical cylindrical spring, large displacement, nonlinear boundary value problem, Kirchhoff’s kinetic analogy, conservation law |
The use of cylindrical spiral springs as flexible connectors, screws and tools for milling and sifting different materials leads to complex geometric non-linear boundary value problems in mechanics of flexible rods. In general, such problems can only be solved by numerical methods, which make the results subject to errors that are difficult to control. This paper proposes a method of estimating these errors by using the conservation law, based on a modification of Kirchhoff’s kinetic analogy. The identical relation, following the analogy of the equations for rigid body motion with one fixed point and the equations of large displacements in flexible rods, applies to the case of helical cylindrical springs carrying distributed loads. Accounting for the distributed loads significantly expands the range of application of Kirchhoff’s kinetic analogy. It is shown that the proposed modification results from the equilibrium equations and the ratio of elasticity of the spring. The feasibility of using the proposed methodology for controlling numerical calculation of large displacements of the springs carrying the distributed load is demonstrated by an example.
References
[1] Liav A. Matematicheskaia teoriia uprugosti [Mathematical Theory of Elasticity]. Moscow, ONTI publ., 1935. 674 p.
[2] Nizette M., Goriely A. Towards a classification of Euler–Kirchhoff filaments. Journal of Mathematical Physics, 1999, vol. 40, is. 6, pp. 2830–2866.
[3] Leung A.Y.T., Kuang J.L. Spatial chaos of buckled elastica by the Kirchhoff analogy of a gyrostat. Computers & Structures, 2005, vol. 83, is. 28–30, pp. 2395–2413.
[4] Shu L., Weber A. A symbolic-numeric method for solving boundary value problems of Kirchhoff Rods. Lecture Notes in Computer Science, 2005, vol. 3718, pp. 387–398.
[5] Da Fonseca A.F., De Aguiar M.A.M. Solving the boundary value problem for finite Kirchhoff rods. Physica D: Nonlinear Phenomena, 2003, vol. 181, is. 1–2, pp. 53–69.
[6] Shvartsman B.S. Analysis of large deflections of a curved cantilever subjected to a tip-concentrated follower force. International Journal of Non-Linear Mechanics, 2013, vol. 50, pp. 75–80.
[7] Van der Heijden G.H.M., Thompson J.M.T. Helical and localized buckling in twisted Rods: A unified analysis of the symmetric case. Nonlinear Dynamics, 2000, vol. 21, is. 1, pp. 71–99.
[8] Svetlitskii V.A. Mekhanika sterzhnei: Ch. 1 Statika [Mechanics rods: Part. 1. Static]. Moscow, Vysshaia shkola publ., 1987. 320 p.
[9] Badikov R.N. Raschetno-eksperimental’noe issledovanie napriazhenno-deformirovannogo sostoianiia i rezonansnykh rezhimov vrashcheniia vintovykh pruzhin v pruzhinnykh mekhanizmakh. Diss. kand. tekh. nauk [Calculation-experimental study of stress-strain state and the resonant modes of rotation of helical springs in spring mechanisms. Cand. tech. sci. diss.]. Moscow, 2009. 166 p.
[10] Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve [Vectors and tensors of the second rank in three-dimensional space]. Sankt-Petersburg, Nestor publ., 2001. 276 p.
[11] Eliseev V.V., Zinov’eva T.V. Mekhanika tonkostennykh konstruktsii. Teoriia sterzhnei [Mechanics of thin-walled structures. The theory of rods]. Sankt-Petersburg, Politekhn. un-t publ., 2008. 95 p.
[12] Eliseev V.V. Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solids]. Sankt-Petersburg, Politekhn. un-t publ., 2006. 231 p.
[13] Zhilin P.A. Prikladnaia mekhanika. Teoriia tonkikh uprugikh sterzhnei [Applied mechanics. Theory of thin elastic rods]. Sankt-Petersburg, Politekhn. un-t publ., 2007. 101 p.
[14] Zhilin P.A. Nonlinear theory of thin rods. Lecture at 33 Summer School-Conference «Advanced Problems in Mechanics». St. Petersburg, 2005, pp. 227–249.
[15] Sorokin F.D. Priamoe tenzornoe predstavlenie uravnenii bol’shikh peremeshchenii gibkogo sterzhnia s ispol’zovaniem vektora konechnogo povorota [Direct representation of the tensor equations of large displacements of the flexible rod with finite rotation vector]. Izvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela [Mechanics of Solids]. 1994, no. 1, pp. 164–168.
[16] Zubov L.M. The problem of the equilibrium of a helical spring in the non-linear three-dimensional theory of elasticity. Journal of Applied Mathematics and Mechanics, 2007, no. 71, pp. 519–526.
[17] D’iakonov V.P. Mathematica 5.1/5.2/6. Programmirovanie i matematicheskie vychisleniia [Mathematica 5.1/5.2/6. Programming and math]. Moscow, DMK-Press, 2008. 574 p.
[18] Gavriushin S.S., Badikov R.N., Ganbat D. Chislennoe modelirovanie protsessov nelineinogo deformirovaniia rabochikh organov pruzhinnykh mel’nits [Numerical modeling of nonlinear deformation of the working bodies of spring mills]. Materialy 15-i mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS-2007) [Proceedings of the 15th international conference on computer mechanics and modern applied codes (VMSPPS 2007)]. Moscow, Vuzovskaia kniga publ., 2007, pp. 139–140.
[19] Gavriushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennye metody proektirovaniia gibkikh uprugikh elementov [Numerical methods for the design of flexible elastic elements]. Kaluga, Oblizdat publ., 2001. 200 p.