A Numerical Study of the Dynamics of a Rotating Curved Spring Using a Single Coil as a Finite Element
Authors: Ivannikov V.V., Sorokin F.D., Zhou Su | Published: 21.02.2018 |
Published in issue: #2(695)/2018 | |
Category: Calculation and Design of Machinery | |
Keywords: coil cylindrical spring, finite element (coil), large rotations, Euler vector, shadow element method, geometrical non-linearity |
A method is developed for numerical calculation of the motion of a curved coiled spring excited by the rotation of one of the grips. For the simulation purposes, the spring is replaced by a discrete set of coils, each of which is considered as a finite element. To construct a geometrically non-linear finite element, that is a coil that takes account of large displacements and rotations, small displacements are counted from an intermediate «shadow» position, in which the element is not deformed. To exclude special points, full rotations are represented as a combination of a tensor and a vector, where the tensor of the large rotation is constant at the integration step, while the variable small part of the rotation is described by the Eluer vector. The method of obtaining the tangent of the rigidity matrix, the generalized mass matrix and the hydroscopic matrix of the finite element (coil) are presented. Non-linear equations are obtained describing the motion of the spring model constructed of such finite elements and numerically integrated by the Newmark method. The calculations results are confirmed by the data obtained through full-scale experiments with a rotating curved spring.
References
[1] Badikov R.N. Raschetno-eksperimental’noe issledovanie napriazhenno-deformirovannogo sostoianiia i rezonansnykh rezhimov vrashcheniia vintovykh pruzhin v pruzhinnykh mekhanizmakh. Diss. kand. tekhn. nauk [Numerical and experimental investigation of stress-strain state and the resonance modes of rotation of the helical spring in a spring. Cand. tech. sci. diss.]. Moscow, 2009. 166 p.
[2] Zhuravlev V.F. Osnovy teoreticheskoi mekhaniki [Foundations of theoretical mechanics]. Moscow, Fizmatlit publ., 2001. 320 p.
[3] Popov V.V., Sorokin F.D., Ivannikov V.V. Razrabotka konechnogo elementa gibkogo sterzhnia s razdel’nym khraneniem nakoplennykh i dopolnitel’nykh povorotov dlia modelirovaniia bol’shikh peremeshchenii elementov konstruktsii letatel’nykh apparatov [A flexible rod finite element with separate storage of cumulated and extra rotations for large displacements of aircraft structural parts modeling]. Trudy MAI [Trudy MAI]. 2017, no. 92. Available at: http://trudymai.ru/published.php?ID=76832 (accessed 6 November 2017).
[4] Sorokin F.D. Osobennosti ratsional’nogo sposoba opisaniia bol’shikh povorotov v zadachakh nelineinoi dinamiki rotornykh mashin [Particularly rational way of describing large rotations in problems of nonlinear dynamics of rotor machines]. 3 Mezhdunarodnaia Shkola-konferentsiia Nelineinaia dinamika mashin [3 international School-conference on nonlinear dynamics of machinery]. Moscow, 12–15 April 2016, Moscow, IMASh RAN publ., 2016, pp. 89–93.
[5] Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve [Vectors and second-rank tensors in three-dimensional space]. Sankt-Petersburg, Nestor publ., 2001. 276 p.
[6] Zhilin P.A. Ratsional’naia mekhanika sploshnykh sred [Rational continuum mechanics]. Sankt-Petersburg, Politekhnicheskii un-t publ., 2012. 584 p.
[7] Eliseev V.V, Zinov’eva T.V. Mekhanika tonkostennykh konstruktsii. Teoriia sterzhnei [Mechanics of thin-walled structures. Theory of rods]. Sankt-Petersburg, Politekhnicheskii un-t publ., 2008. 95 p.
[8] Sorokin F.D. Priamoe tenzornoe predstavlenie uravnenii bol’shikh peremeshchenii gibkogo sterzhnia s ispol’zovaniem vektora konechnogo povorota [Direct tensor representation of the equations of large displacement of the flexible rod by means of the nite rotation vector]. Izvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela [Mechanics of Solids]. 1994, no. 1, pp. 164–168.
[9] Sorokin F.D. Vektorno-matrichnoe opisanie bol’shikh povorotov pri razrabotke konechnykh elementov mekhanicheskikh system [Vector-matrix description of the big twists in the development of finite elements for mechanical systems]. Komp’iuternye tekhnologii analiza inzhenernykh zadach mehaniki. Sb. tr. Mezhdunar. nauch. shkoly dlia molodezhi [Computer technology of task analysis mechanical engineer. Proceedings of the International scientific school for young people]. Moscow, 9–13 November 2009, Moscow, IMASh RAN publ., pp. 106–113.
[10] Géradin M., Cardona A. Flexible multibody dynamics – A finite element approach. New York, Wiley, 2001. 327 p.
[11] Sorokin F.D., Su Chzhou. Razrabotka konechnogo elementa v vide vitka tsilindricheskoi pruzhiny [Development of a finite element in the form cylindrical coil springs]. 3 Mezhdunarodnaia Shkola-konferentsiia Nelineinaia dinamika mashin [3 International School-conference of young scientists Nonlinear dynamics of machinery]. Moscow, IMASh RAN publ., 2016, pp. 261–265.
[12] Felippa C.A. A Systematic Approach to the Element-Independent Corotational Dynamics of Finite Elements. Department of Aerospace Engineering Sciences and Center for Aerospace Structures, USA, University of Colorado, 2000. 42 p.
[13] Felippa C.A., Haugen B. Unified Formulation of Small-Strain Corotational Finite Elements: I. Theory. Computer Methods in Applied Mechanics and Engineering, 2005, vol. 194, pp. 2285–2335.
[14] D’iakonov V.P. Mathematica 5.1/5.2/6. Programmirovanie i matematicheskie vychisleniia [Mathematica 5.1/5.2/6. Programming and mathematical calculations]. Moscow, DMK-Press, 2008. 574 p.
[15] Thomson W.T. Theory of Vibration with Applications. Cheltenham, Nelson Thornes, 2003. 546 p.
[16] Sergienko A.B. Tsifrovaia obrabotka signalov [Digital signal processing]. Sankt-Petersburg, Piter publ., 2002. 608 p.