Prediction of durability and reliability of structural elements under high pressure. Part 1. Numerical simulation of damage accumulation
Authors: Dimitrienko Yu.I., Yurin Yu.V., Evropin S.V. | Published: 05.12.2013 |
Published in issue: #11(644)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: durability prediction, damage accumulation, fatigue, creep, simulation, finite element method, high-pressure vessels, «chemical» long-term strength criterion |
To assess the reliability of unique structures such as reactor vessels of advanced nuclear power plants produced in small batches, the conventional numerical methods based on the steady-state analysis of failures are not applicable. In this paper, a method for predicting durability of complex structural elements of high pressure under prolonged cyclic loading is proposed. The method implies the calculation of a three-dimensional stress-strain state of a structure taking into account creep deformation, accumulation of damages, and durability. To calculate damage accumulation and durability under complex loading conditions, the so-called «chemical» long-term strength criterion is used. Three-dimensional creep problems of structural mechanics are solved by an iterative method based on the finite element method. This method is applied to the numerical analysis of damageability and durability of a high-pressure propulsion system comprising a three-layer structure with welded pipes. This type of construction is used in nuclear power plants. The developed method will be used in Part 2 of the paper to calculate reliability characteristics of structures.
References
[1] Beck A.T., Edison da Rosa. Structural reliability analysis using deterministic finite element Programs. Latin American Journal of Solids and Structures, 2006, no. 3, pp. 197—222.
[2] Anantha Ramu S., Ganesan R. Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method. Finite Elements in Analysis and Design, 1992, no. 11, pp. 105—115.
[3] Adhikari S., Manohar C.S. Dynamic analysis of framed structures with statistical uncertainties. International Journal of Numerical Methods in Engineering. 1999, vol. 44, pp. 1157—1178.
[4] Wang D., ChowdhuryM.R., Haldar A. System reliability evaluation considering strength and serviceability requirements. International Journal of Computers and Structures, 1997, vol. 62, no. 5, pp. 883—896.
[5] Takada T. Weighted integral method in multidimensional stochastic finite element analysis. Probabilistic Engineering Mechanics, 1990, vol. 5, no. 4, pp. 158—166.
[6] Spanos P.D., Ghanem R. Stochastic finite element expansion for random media. Journal of Engineering Mechanics, 1989, vol. 115, no. 5, pp. 1035—1053.
[7] Mahadevan S., Dey A. Adaptive Monte Carlo simulation for time-variant reliability analysis of brittle structures. AIAA Journal, 1997, vol. 35, no. 2, pp. 321—326.
[8] Liu W.K., Bestereld G.H., Belytschko T. Variational approach to probabilistic finite elements. Journal of Engineering Mechanics ASCE, 1988, vol. 114, no. 12, pp. 2115—2133.
[9] Der Kiureghian A., Ke J.B. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 1988, vol. 3, no. 2, pp. 83—91.
[10] Chang T.P. Dynamic finite element analysis of a beam on random foundation. Computers & Structures, 1993, vol. 48, no. 4, pp. 583—589.
[11] Bolotin V.V. Primenenie metodov teorii veroiatnostei i teorii nadezhnosti v raschetakh sooruzhenii [Application of the theory of probability and reliability theory in the calculation of structures]. Moscow, Stroiizdat publ., 1971. 256 p.
[12] Il’iushin A.A., Pobedria B.E. Osnovy matematicheskoi teorii teormviazkouprugos t i [Fundamental s of mathemat ical theory thermoviscoelasticity]. Moscow, Nauka publ., 1970. 256 p.
[13] Dimitrienko Iu.I., Dimitrienko I.P. Dlitel’naia prochnost’ armirovannykh plastikov [Long-term strength of reinforced plastics]. Mekhanika kompozitnykh materialov [Composite mechanics and Design]. 1989, no. 1, pp. 16—22.
[14] Dimitrienko Iu.I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh [Mechanics of composite materials at high temperatures]. Moscow, Mashinostroenie publ., 1997. 366 p.
[15] Dimitrienko Iu.I. Asimptoticheskaia teoriia mnogosloinykh tonkikh plastin [Asymptotic Theory of Multilayer Thin Plates]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the BaumanMoscow State Technical University. Ser. Natural sciences]. 2012, no. 3, pp. 86—100.
[16] Dimitrienko Iu.I. Nelineinaia mekhanika sploshnoi sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit publ., 2009. 610 p.
[17] Dimitrienko Iu.I. Tenzornyi analiz. V 3 t. T. 1: Mekhanika sploshnoi sredy [Tensor analysis. In 3 vol. 1: Continuum Mechanics]. Moscow, Bauman Press, 2011. 463 p.
[18] Dimitrienko Iu.I., Dimitrienko I.P. Prognozirovanie dolgovechnosti polimernykh elementov konstruktsii s pomoshch’iu «khimicheskogo» kriteriia dlitel’noi prochnosti [Predicting durability of polymeric structural elements with the help of «chemical» criterion of long-term strength]. Voprosy oboronnoi tekhniki [Questions of defense equipment]. 2002, no. 1/2, pp. 15—21.
[19] Dimitrienko Iu.I., Dimitrienko I.P. Raschet soprotivleniia ustalosti kompozitov na osnove «khimicheskogo» kriteriia dlitel’noi prochnosti [The calculation of the fatigue resistance of the composites based on «chemical» long-term strength criterion]. Voprosy oboronnoi tekhniki [Questions of defense equipment]. 2002, no. 1/2, pp. 21—25.
[20] Dimitrienko Iu.I., Dubrovina A.Iu., Sokolov A.P. Konechnoelementnoe modelirovanie ustalostnykh kharakteristik kompozitsionnykh materialov [Finite element modeling of fatigue properties of composite materials]. VestnikMGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Ser. Natural sciences]. Spets. vyp. Matematicheskoe modelirovanie [Special issue Mathematical Modeling]. 2011, pp. 34—49.