Simulation of motion of a three-link robot with a gearless drive using robust regulators
Authors: Makarova T.A. | Published: 24.01.2014 |
Published in issue: #1(646)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: interaction of axes, regulator, gearless drive, manipulator, modeling, robust algorithm |
Many modern technological problems can be described by interval systems of differential equations. To solve these systems, robust stabilization algorithms are required. In this paper, an approach for developing a regulator on the basis of the algorithm for stabilizing interval quadratic systems by the method of forms is presented. This problem of dynamic control of manipulators is relevant in the design of robots with conventional drives in the case of large masses and/or velocity, as well as robots with more advanced gearless drives taking into account interactions of axes. The mathematical transformation of robot dynamics equations to an interval form is given and the mathematical model of a regulator using vector tactical level feedbacks is described in detail. The efficiency of stabilization is proved by the computer simulation of motion of a three-link robot with a regulator. The results showed a significant reduction in dynamic error. A robust regulator can be used as part of a general robot control system.
References
[1] Iliukhin Iu.V. Upravlenie ispolnitel’nymi sistemami lazernykh tekhologicheskikh kompleksov s uprugimi mekhanicheskimi peredachami [Management of executive systems, laser processing systems with elastic mechanical transmissions]. Moscow State University of Technology «STANKIN» publ., Depon. VINITI, 1997, no. 413-V97, 27 p.
[2] Intellektual’nye sistemy avtomaticheskogo upravleniia [Intelligent automatic control system]. Ed. Makarov I.M., Lokhin V.M. Moscow, FIZMATLIT publ., 2001. 576 p.
[3] Zenkevich S.L., Iushchenko A.S. Osnovy upravl eni ia manipuliatsionnymi robotami [Management Basics robotic manipulator]. Moscow, Bauman Press, 2004. 480 p.
[4] Makarova T.A., Stebulianin M.M. Otsenka vzaimovliianiia dvizheniia stepenei podvizhnosti trekhzvennogo robota s bezreduktornymi privodami [Evaluation of interference of movement degrees of mobility three-link robot with gearless drives]. Vestnik MGTU «Stankin» [Bulletin of Moscow State University of Technology «STANKIN»]. 2012, no. 3(22), pp. 149–154.
[5] I l iukhin Iu.V. Sover shens tvovanie s i s tem upravleni ia mekhanoobrabatyvaiushchikh tekhnologicheskikh robotov na osnove kontseptsii mekhatroniki [Improving the management systems of machining technology of robots based on the concepts of mechatronics]. Mekhatronika [Mechatronics]. 2001, no. 2, pp. 7–13.
[6] Wi l lems J.C. , Takaba K. Di s s ipat ivi ty and s tabi l i ty of interconnections. International Journal of Robust and Nonlinear Control, 2007, vol. 17, issue 5–6, pp. 563–586.
[7] Willems J.C. On interconnections, control and feedback. IEEE Transactions on Automatic Control, 1997, vol. 42, pp. 326–339.
[8] Vukobratovich M., Stokich D., Kirchanski N. Neadaptivnoe i adaptivnoe upravlenie manipuliatsionnymi robotami [Non-adaptive and adaptive control of robotic manipulator]. Moscow, Mir publ., 1989. 376 p.
[9] Egorov O.D. Mekhanika i konstruirovanie robotov [Mechanics and design of robots]. Moscow, Moscow State University of Technology «STANKIN» publ., 1997. 510 p.
[10] Egorov O.D., Poduraev Iu.V. Konstruirovanie mekhatronnykh modulei [Designing mechatronic modules]. Moscow, Moscow State University of Technology «STANKIN» publ., 2004. 360 p.
[11] Stebulianin M.M. Algoritm asimptoticheskoi stabilizatsii v tselom interval’nykh kvadratichnykh sistem s neogranichennym upravleniem [Algorithm of Asymptotic General Stabilization of Iinterval Quadratic Systems with Unlimited Control]. MAU [Mechatronics, automation, management]. 2010, no. 5, pp. 7–13.
[12] Stebulianin M.M., Makarova T.A. Metod form pri asimptoticheskoi stabilizatsii reshenii interval’nykh kvadratichnykh system [Stability and stabilization of motion with respect to the variables]. Sovremennoe sostoianie estestvennykh i tekhnicheskikh nauk. Materialy 7 Mezhdunarodnoi nauchno-prakticheskoi konferentsii [The current state of the natural and technical sciences. Proceedings of the 7th International Scientific and Practical Conference]. Moscow, 2012, pp. 9–15.
[13] Rumiantsev V.V., Oziraner A.S. Ustoichivost’ i stabilizatsiia dvizheniia po otnosheniiu k chasti peremennykh [Stability and stabilization of motion with respect to part of the variables]. Moscow, Nauka publ., 1987. 256 p.
[14] Lakeev A.V. Sushchestvovanie i edinstvennost’ algebraicheskikh reshenii interval’nykh lineinykh sistem v polnoi arifmetike Kaukhera [Existence and uniqueness of algebraic solutions to interval linear systems in Kaucher complete interval arithmetic]. Vychislitel’nye tekhnologii [Computational Technologies]. 1999, vol. 4, no. 4, pp. 33–44.