Coupled nonstationary axisymmetric problem of the thermal electrical elasticity for a circular multilayer plate
Authors: Shlyakhin D.A., Savinova E.V. | Published: 04.03.2025 |
Published in issue: #3(780)/2025 | |
Category: Mechanics | Chapter: Solid Mechanics | |
Keywords: thermal electrical elasticity problem, coupled problem, circular multilayer plate, biorthogonal finite integral transformation |
The paper considers a circular multilayer plate made of the elastic and electroelastic (piezoceramic) materials at its cylindrical surface hinged fastening. Mathematical formulation of the coupled nonstationary axisymmetric initial-boundary value problem of the thermal electrical elasticity includes the not self-adjoint systems of partial differential equations, as well as the thermal conductivity boundary conditions of the first, third, and fourth kind. Using the equilibrium equations imposes a restriction on the rate of external load alteration in the form of temperature on the plate upper front surface. The paper considers a three-layer electroelastic system to ensure definiteness of the constructed algorithm. Using the method of finite integral transformations makes it possible to construct a closed solution. The one-component Hankel transform is applied along the radial variable in carrying out the procedure of the variables incomplete separation; and a new class of vector transforms based on the multicomponent relationship of the eigenvector functions biorthogonality of the two homogeneous boundary value problems is applied along the axial coordinate. Such transforms allow constructing an adjoint operator, without which it is impossible to solve the not self-adjoint linear boundary value problems. A three-layer structure consisting of the metal substrate that increases the transducer strength properties, piezoceramic plate and heat-insulating layer is selected as the numerical example. The paper analyzes relationship between this structure layers height and the electric pulse determined by connecting the piezoelectric plate electroded equipotential surfaces to a measurement device with the high input resistance. The obtained results make it possible to justify a rational program of experiments in the design and development of the thermal piezoceramic transducers and to reduce the volume of the full-scale research.
EDN: YVZIKO, https://elibrary/yvziko
References
[1] Ionov B.P., Ionov A.B. Statistic-spectral approach to noncontact temperature measurement. Datchiki i sistemy [Sensors & Systems], 2009, no. 2, pp. 9–12. (In Russ.).
[2] Pankov A.A. Resonant diagnostics of temperature distribution by the piezo-electro-luminescent fiber-optical sensor according to the solution of the Fredholm integral equation. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2018, no. 2, pp. 72–82, doi: https://doi.org/10.15593/perm.mech/2018.2.07 (in Russ.).
[3] Kazaryan A.A. Fine-film captive pressure and temperature. Datchiki i sistemy [Sensors & Systems], 2016, no. 3, pp. 50–56. (In Russ.).
[4] Mindlin R.D. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct., 1974, vol. 10, no. 6, pp. 625–637, doi: https://doi.org/10.1016/0020-7683(74)90047-X
[5] Lord H. A generalized dynamical theory of thermoelasticity. J. Elasticity, 1967, vol. 15, no. 5, pp. 299–309, doi: https://doi.org/10.1016/0022-5096(67)90024-5
[6] Green A.E. Thermoelasticity without energy dissipation. J. Elasticity, 1993, no. 31, pp. 189–208, doi: https://doi.org/10.1007/BF00044969
[7] Saadatfar M., Razavi A.S. Piezoelectric hollow cylinder with thermal gradient. J. Mech. Sci. Technol., 2009, vol. 23, no. 1, pp. 45–53, doi: https://doi.org/10.1007/s12206-008-1002-8
[8] Chen W.Q., Shioya T. Piezothermoelastic behavior of a pyroelectric spherical shell. J. Therm. Stress., 2001, no. 24, no. 2, pp. 105–120, doi: https://doi.org/10.1080/01495730150500424
[9] Obata Y., Noda N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material. J. Therm. Stress., 1994, no. 17, no. 3, pp. 471–487, doi: https://doi.org/10.1080/01495739408946273
[10] Podil’chuk Y.N. Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems. Int. Appl. Mech., 2003, vol. 39, no. 2, pp. 132–170, doi: https://doi.org/10.1023/A:1023953313612
[11] Khorsand M. Dynamic analysis of a functionally graded piezoelectric spherical shell under mechanical and thermal shocks. J. Mech. Eng. Sci., 2014, vol. 228, no. 4, pp. 632–645, doi: https://doi.org/10.1177/0954406213489445
[12] Akbarzadeh A.H., Babaei M.H., Chen Z.T. The thermo-electromagnetoelastic behavior of a rotating functionally graded piezoelectric cylinder. Smart Mater. Struct., 2011, vol. 20, no. 6, art. 065008, doi: https://doi.org/10.1088/0964-1726/20/6/065008
[13] Rahimi G.H., Arefi M., Khoshgoftar M.J. Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads. Appl. Math. Mech., 2011, vol. 32, no. 8, pp. 997–1008, doi: https://doi.org/10.1007/s10483-011-1475-6
[14] Shlyakhin D.A., Kalmova M.A. Uncoupled problem of thermoelectroelasticity for a cylindrical shell. In: XXX Russian-Polish-Slovak seminar theoretical foundation of civil engineering (RSP 2021). Springer, 2022, pp. 263–271, doi: https://doi.org/10.1007/978-3-030-86001-1_31
[15] Shlyakhin D.A., Savinova E.V., Yurin V.A. Dynamic problem of thermoelectricity for round rigidly fixed plate. Vestnik inzhenernoy shkoly DVFU [FEFU: School of Engineering Bulletin], 2022, no. 1, pp. 3–16, doi: https://doi.org/10.24866/2227-6858/2022-1/3-16 (in Russ.).
[16] Vatulyan A.O. Thermal shock on thermo-electroelastic layer. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Don State Technical University], 2001, vol. 1, no. 1, pp. 82–89. (In Russ.).
[17] Shang F., Kuna M., Kitamura T. Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part I: Analytical development. Theor. Appl. Fract. Mech., 2003, vol. 40, no. 3, pp. 237–246, doi: https://doi.org/10.1016/j.tafmec.2003.08.003
[18] Kirilyuk V.S. Thermostressed state of a piezoelectric body with a plate crack under symmetric thermal load. Int. Appl. Mech., 2008, vol. 44, no. 3, pp. 320–330, doi: https://doi.org/10.1007/s10778-008-0048-8
[19] Pryakhina O.D., Smirnova A.V., Samoylov M.V. et al. The physical fields coherence account in dynamic problems for multilayered mediums. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2010, vol. 7, no. 1, pp. 54–60. (In Russ.).
[20] Shlyakhin D.A., Kalmova M.A. The nonstationary thermoelectric elasticity problem for a long piezoceramic cylinder. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2021, no. 2, pp. 181–190, doi: https://doi.org/10.15593/perm.mech/2021.2.16 (in Russ.).
[21] Shlyakhin D.A., Kalmova M.A. Related dynamic axisymmetric thermoelectroelasticity problem for a long hollow piezoceramic cylinder. Advanced Engineering Research, 2022, vol. 22, no. 2, pp. 81–90, doi: https://doi.org/10.23947/2687-1653-2022-22-2-81-90 (in Russ.).
[22] Kaloerov S.A., Glushankov E.S. Determining the thermo-electro-magneto-elastic state of multiply connected piecewise-homogeneous piezoelectric plates. Prikladnaya mekhanika i tekhnicheskaya fizika, 2018, vol. 59, no. 6, pp. 88–101, doi: https://doi.org/10.15372/PMTF20180609 (in Russ.). (Eng. version: J. Appl. Mech. Tech. Phy., 2018, vol. 59, no. 6, pp. 1036–1048, doi: https://doi.org/10.1134/S0021894418060093)
[23] Qin H.Q. Greens function for thermopiezoelectric plates with holes of various shapes. Arch. Appl. Mech., 1999, vol. 69, pp. 406–418, doi: https://doi.org/10.1007/s004190050230
[24] Firsanov V.V., Nguen L.Kh. Stress-strain state of arbitrary shells with account for thermoelectric impact based on refined theory. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2020, vol. 12, no. 3, pp. 110–117, doi: https://doi.org/10.34759/tpt-2020-12-3-110-117 (in Russ.).
[25] Ishihara M., Ootao Y., Kameo Y. et al. Thermoelectroelastic response of a piezoelectric cylinder with symmetry under axisymmetric mechanical and thermal loading. Mech. Eng. J., 2017, vol. 4, no. 5, pp. 16–00609, doi: https://doi.org/10.1299/mej.16-00609
[26] Gupta V., M.S., B. and Das S. Impact of memory-dependent heat transfer on Rayleigh waves propagation in nonlocal piezo-thermo-elastic medium with voids. Int. J. Numer. Method H., 2024, vol. 34, no. 4, pp. 1902–1926, doi: https://doi.org/10.1108/HFF-10-2023-0615
[27] Kulikov G.M., Plotnikova S.V. Controlling the shape of laminated composite plates with piezoelectric patches under thermal loading based on the reference surface method. Izvestiya RAN. MTT, 2021, no. 5, pp. 45–63, doi: https://doi.org/10.31857/S0572329921040085 (in Russ.). (Eng. version: Mech. Solids, 2021, vol. 56, no. 5, pp. 646–660, doi: https://doi.org/10.3103/S0025654421050137)
[28] Azizzadeh A., Behjat B. Static and natural frequency investigation of FGP beams considering thermal effects and design parameters. J. Eng. Appl. Sci., 2023, vol. 70, art. 92, doi: https://doi.org/10.1186/s44147-023-00250-4
[29] Zhong X., Wu Y., Zhang K. An extended dielectric crack model for fracture analysis of a thermopiezoelectric strip. Acta Mech. Solida Sin., 2020, vol. 33, no. 4, pp. 521–545, doi: https://doi.org/10.1007/s10338-019-00149-9
[30] Vatulyan A.O., Nesterov S.A. The dynamic problem of thermoelectroelasticity for functionally graded layer. Vychislitelnaya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2017, vol. 10, no. 2, pp. 117–126, doi: https://doi.org/10.7242/1999-6691/2017.10.2.10 (in Russ.).
[31] Vatulyan A.O., Nesterov S.A. Iterative scheme for solving the coefficient inverse problem of thermoelectroelasticity. Vychislitelnaya mekhanika sploshnykh sred [Computational Continuum Mechanics], 2017, vol. 10, no. 4, pp. 445–455, doi: https://doi.org/10.7242/1999-6691/2017.10.4.36 (in Russ.).
[32] Shlyakhin D.A., Dauletmuratova Zh.M. Non-stationary coupled axisymmetric thermoelasticity problem for a rigidly fixed round plate. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2019, no. 4, pp. 191–200, doi: https://doi.org/10.15593/perm.mech/2019.4.18 (in Russ.).
[33] Shlyakhin D.A., Savinova E.V. A coupled non-stationary axisymmetric problem of thermoelectroelasticity for a circular piezoceramic hinged plate. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fiziko-matematicheskie nauki [Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences], 2023, vol. 27, no. 1, pp. 159–178, doi: https://doi.org/10.14498/vsgtu1959 (in Russ.).
[34] Kovalenko A.D. Osnovy termouprugosti [Fundamentals of thermoelasticity]. Kiev, Naukova Dumka Publ., 1970. 307 p. (In Russ.).
[35] Parton V.Z., Kudryavtsev B.A. Elektrouprugost pyezoelektricheskikh i elektroprovodnykh tel [Electroelasticity of piezoelectric and electrically conductive bodies]. Moscow, Nauka Publ., 1988. 470 p. (In Russ.).
[36] Kartashov E.M. Analiticheskie metody v teploprovodnosti tverdykh tel [Analytical methods in heat conduction of solid bodies.]. Moscow, Vysshaya shkola Publ., 1985. 480 p. (In Russ.).
[37] Sneddon I.N. Fourier transforms. Courier Corporation, 1995. 542 p. (Russ. ed.: Preobrazovaniya Furye. Moscow, Izd-vo inostr. lit. Publ., 1955. 668 p.)
[38] Janke E., Emde F., Lösch F. Tafeln hoherer funktionen. B.G. Teubner, 1960. 318 p. (Russ. ed.: Spetsialnye funktsii. Moscow, Nauka Publ., 1977. 342 p.)
[39] Senitskiy Yu.E. A biorthogonal multicomponent finite integral transformation and its application to boundary value problems in mechanics. Izv. vuzov. Matematika, 1996, no. 8, pp. 71–81. (In Russ.). (Eng. version: Russian Math. (Iz. VUZ), 1996, vol. 40, no. 8, pp. 69–79.)
[40] Selvamani R. Influence of thermo-piezoelectric field in a circular bar subjected to thermal loading due to laser pulse. Fizika i mekhanika materialov [Materials Physics and Mechanics], 2016, vol. 27, no. 1, pp. 1–8.