On the Full Annular Rub in the Flexible Rotor — Compliant Stator System due to Friction
Authors: Nikiforov A.N. | Published: 25.10.2018 |
Published in issue: #10(703)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: rotor-stator system, contact rotor dynamics, backward precession, frequency and amplitude of vibration |
This paper describes a model of axisymmetric flexible rotor that slip-rolls a compliant isotropic stator. Three finite elements are used: rotating beam, rigid disk, and linear bearing. Friction in the system is considered as an aggregate of three components: contact friction, hysteretic and viscous damping. The stator is assumed to be fixed or mounted on elastic supports. Angular velocity and amplitude of rotor precession are determined by the matrix methods. It is shown that the angular velocity of the slip-roll depends on the coefficients of structural and contact friction. It is always lower than any given eigen frequency of the rotor leaning on the stator. The developed mathematical model corresponds to a large number of real rotor machines, for instance turbo- and oil-well pumps.
References
[1] Begg I.C. Friction Induced Rotor Whirl – A Study in Stability. ASME Journal of Engineering for Industry, 1974, vol. 96, no. 2, pp. 450–454.
[2] Poznyak E.L. Krutil’nyy udar v valoprovode pri vnezapnoy i sil’noy razbalansirovke odnogo iz rotorov [A torsional shock in the shaft line with a sudden and strong imbalance of one of the rotors]. Mashinovedenie [Engineering science]. 1987, no. 5, pp. 66–74.
[3] Ahmetishen N.H., Nagaev R.F. Dinamika neuravnoveshennogo rotora s suhim treniem v podshipnike [Dynamics of unbalanced rotor with dry friction in the bearing]. Izvestiya RAN. Mekhanika tverdogo tela [Mechanics of Solids]. 1995, no. 5, pp. 57–63.
[4] Shen X., Jia J., Zhao M. Effect of parameters on the rubbing condition of an unbalanced rotor system with initial permanent deflection. Archive of Applied Mechanics, 2007, vol. 77, pp. 883–892.
[5] Nikiforov A.N. Ob obkatke s proskal’zyvaniem rotora po statoru i vliyanie na ee chastotu treniya i giroskopicheskih momentov [About running-in with rotor slip on the stator and influence on its friction frequency and gyroscopic moments]. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering journal with appendix]. 2018, no. 9, pp. 21–31.
[6] Grápis O., Tamužs V., Ohlson N.-G., Anderson J. Overcritical high-speed rotor systems, full annular rub and accident. Journal of Sound and Vibration, 2006, vol. 290, pp. 910–927.
[7] Yu J.J., Goldman P., Bently D.E., Muszynska A. Rotor/Seal Experimental and Analytical Study on Full Annular Rub. ASME Journal of Engineering for Gas Turbines and Power, 2002, vol. 124, no. 2, pp. 340–350.
[8] Kurakin A.D., Nihamkin M.Sh., Semenov S.V. Dinamika neuravnoveshennogo gibkogo rotora v anizotropnyh oporah pri kontakte so statorom [Dynamics of unbalanced flexible rotor with anisotropic supports during contact with the stator]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika [PNRPU Mechanics Bulletin]. 2016, no. 4, pp. 364–381.
[9] Sawicki J.T., Montilla-Bravo A., Gosiewski Z. Thermomechanical Behavior of Rotor with Rubbing. International Journal of Rotating Machinery, 2003, vol. 9, no. 1, pp. 41–47, doi: https://doi.org/10.1155/S1023621X03000058.
[10] Zhang G.F., Xu W.N., Xu B., Zhang W. Analytical study of nonlinear synchronous full annular rub motion of flexible rotor–stator system and its dynamic stability. Nonlinear Dynamics, 2009, vol. 57, pp. 579–592.
[11] Lahriri S., Weber H.I., Santos I.F., Hartmann H. Rotor-stator contact dynamics using a non-ideal drive – Theoretical and experimental aspects. Journal of Sound and Vibration, 2012, vol. 331, pp. 4518–4536.
[12] Kostyuk A.G., Shatohin V.F., Tsimmerman S.D. Chislennoe modelirovanie nestatsionarnyh kolebaniy posle vnezapnoy razbalansirovki mnogoopornogo rotora s obkatom neuravnoveshennogo rotora po statoru [Numerical simulation of unsteady oscillations after a sudden unbalance of a multi-support rotor with an unbalanced rotor roll over the stator]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace engineering and technology]. 2011, no. 8(85), pp. 81–93.
[13] Nikiforov A.N., Shokhin A.E. Elastoplastic viscous model of rotor-stator impact interaction without separation. Mechanics of Solids, 2016, vol. 51, no. 1, pp. 54–64.
[14] Krestnikovskiy K.V., Nikiforov A.N., Shohin A.E. Chastota obkatki rotorom statora v zavisimosti ot velichiny zazorov mezhdu nimi [The frequency of running the rotor of the stator, depending on the size of the gaps between them]. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering journal with appendix]. 2018, no. 8, pp. 24–38.
[15] Zorzi E.S., Nelson H.D. Finite Element Simulation of Rotor-Bearing Systems with Internal Damping. ASME Journal of Engineering for Power, 1977, vol. 99, no. 1, pp. 71–76.
[16] Nelson H.D. A Finite Rotating Shaft Element Using Timoshenko Beam Theory. ASME Journal of Mechanical Design, 1980, vol. 102, no. 4, pp. 793–803.
[17] Leont’ev M.K., Davydov A.V., Degtyarev S.A. Dinamicheskaya ustoychivost’ rotora turbogeneratora [Dynamic stability of the turbine generator rotor]. Gazoturbinnye tekhnologii [Turbine technology]. 2012, no. 4(105), pp. 36–40.
[18] Podol’skiy M.E. Fizicheskaya priroda i diskussionnye voprosy teorii maslyanyh vibratsiy [The influence of oil film inertia forces on the motion of lightly loaded rotors]. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. 2009, vol. 7, no. 13, pp. 42–59.
[19] Nikiforov A.N. Analiticheskoe opredelenie sobstvennyh chastot vrashchayushcheysya siste-my s treniem [Analytical determination of natural frequencies of a rotating system with friction]. Mashinovedenie i innovatsii. Konferentsiya molodyh uchenyh i studentov. Tr. 29 Mezhdunar. konf. [Machine science and innovation. Conference of young scientists and students. Proceedings of the 29 International Conference]. Moscow, 6–8 December 2017, Moscow, IMASH RAN publ., 2018, pp. 219–221.