Beck’s task with a pulsating tracking force
Authors: Radin V.P., Chirkov V.P., Shchugorev A.V., Shchugorev V.N. | Published: 21.10.2022 |
Published in issue: #11(752)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: non-conservative loads, cantilever rod stability, parametric oscillations, Floquet theory, flutter and divergence boundaries, parametric resonance |
During the research of the stability of mechanical systems under loading conditions by non-conservative forces, the phenomena are encountered that are not typical for ordinary problems of mechanics (an unusual effect of friction, non-convexity, non-simply connectedness of the stability region in the space of loading parameters, etc.). The research was made of the stability of a cantilever rod under the action of compressive forces - constant potential and follower (taking into account the pulsations of the latter). A harmonic law of change in the value of the following force has been adopted. Using the methods of the Floquet theory, the parametric vibrations of the system are analyzed with the study of the position of the boundaries of the stability region on the plane of loading parameters. The nature of the system motion in the vicinity of the boundaries of the stability region is determined.
References
[1] Beck M., Angew Z. Die knicklast des einseitig eingespannten tangential gedruckten stabes. Z. Angew. Math. Phys., 1952, vol. 3, no. 3, pp. 225–228, doi: https://doi.org/10.1007/BF02008828
[2] Elishakoff I. Controversy associated with the so-called ‘‘follower forces’’: critical overview. Appl. Mech. Rev., 2005, vol. 58, no. 2, pp. 117–142, doi: https://doi.org/10.1115/1.1849170
[3] Reut V.I. On theory of elastic stability. Tr. Odesskogo in-ta inzh. grazhd. i komm. str-va, 1939, no. 1, pp. 115–190. (In Russ.).
[4] Nikolai E.L. On stability of straight equilibrium position of a compressed and twisted bar. Izv. Leningr. politekhn. in-ta, 1928, no. 31, pp. 1–26. (In Russ.).
[5] Paidoussis M.P. Dynamics of tubular cantilevers conveying fluid. J. Mech. Eng. Sci., 1970, vol. 12, no. 2, pp. 85–103, doi: https://doi.org/10.1243%2FJMES_JOUR_1970_012_017_02
[6] Bolotin V.V. Nekonservativnye zadachi teorii uprugoy ustoychivosti [Unconservative problems of elastic stability theory]. Moscow, Fizmatgiz Publ., 1961. 340 p. (In Russ.).
[7] Lagozinskiy S.A., Sokolov A.I. Ustoychivost’ pryamolineynykh sterzhney, nagruzhennykh sledyashchimi silami [Stability of a straight rod loaded by following forces]. V: Problemy prikladnoy mekhaniki, dinamiki i prochnosti mashin [In: Problems of applied mechanicsm dynamics and strength of machines]. Moscow, Bauman MSTU Publ., 2005, pp. 244–259. (In Russ.).
[8] Bolotin V.V., Chirkov V.P., Radin V.P. et al. Parametricheskie kolebaniya v nekonservativnykh sistemakh [Parametric oscillations in nonconservative systems]. V: Problemy prikladnoy mekhaniki, dinamiki i prochnosti mashin [In: Problems of applied mechanicsm dynamics and strength of machines]. Moscow, Bauman MSTU Publ., 2005, pp. 22–31. (In Russ.).
[9] Okopnyy Yu.A., Radin V.P., Chirkov V.P. et Analysis of stability of cantilever beam subjected to parametric excitation by conservative and nonconscrvative forces sil. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal], 2008, no. 9, pp. 28–32. (In Russ.).
[10] Radin V.P., Chirkov V.P., Shchugorev A.V. et al. The stability and parametric resonances in the system of Reut. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal], 2018, no. 11, pp. 20–27, doi: https://doi.org/10.14489/hb.2018.11.pp.020-027 (in Russ.).
[11] Radin V.P., Chirkov V.P., Shugorev A.V. et al. Influence of flow velocity impermanence on limits of pipeline stability. Vestnik MGU. Seriya 1. Matematika. Mekhanika, 2022, no. 1, pp. 48–54. (In Russ.).
[12] Bolotin V.V., ed. Vibratsii v tekhnike. T. 1. Kolebaniya lineynykh system [Vibrations in technics. Vol. 1. Oscillations in linear systems]. Moscow, Mashinostroenie Publ., 1978. 352 p. (In Russ.).
[13] Panovko Ya.G. Vnutrennee trenie pri kolebaniyakh uprugikh system [Internal friction at elastic system oscillations]. Moscow, Fizmatgiz Publ., 1960. 193 p. (In Russ.).
[14] Ziegler H. Die Stabilitats kriterien der elastomechanik. Ing. Arch., 1952, vol. 20, no. 1, pp. 49–56, doi: https://doi.org/10.1007/BF00536796
[15] Radin V.P., Samogin Yu.N., Chirkov V.P. et al. Reshenie nekonservativnykh zadach teorii ustoychivosti [Solving nonconservative problems of elasticity theory]. Moscow, Fizmatlit Publ., 2017. 236 p. (In Russ.).
[16] Bolotin V.V., Vorob’yev V.I., Semenov V.A. et al. On parametric stabilization of instable equilibrium in mechanical systems. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1979, no. 1, pp. 36–44. (In Russ.).
[17] Petrovskiy A.V. Nelineynaya dinamika i ustoychivost’ nekonservativnykh system [Nonlinear dynamics and stability of nonconservative systems]. Moscow, Izd-vo MEI Publ., 2003. 112 p. (In Russ.).