Problem features in synthesizing the non-circular gearwheels for a planetary train with the floating pinion
Authors: Volkov G.Yu., Alekseeva Yu.V. | Published: 29.08.2024 |
Published in issue: #9(774)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: planetary rotary hydraulic machine, floating pinions, non-circular gearwheels, Arongold-Kennedy theorem |
The idea of using a planetary train with the non-circular central gearwheels and floating pinions in a hydraulic machine is circulating for more than a hundred years. However, until now any exact solution to the problem of profiling the central wheel of a non-circular gearwheel is missing. Unlike most flat gearwheels used in practice, their synthesis could not be carried out based on the Willis theorem. It requires introduction of the Arongold-Kennedy theorem. The paper proposes an adjusted method in designing mechanisms under consideration. It includes the following stages: computing trajectories of the generating pinion center in the coordinate systems associated with each of the central wheels; computing the pinion angular positions; graphical construction of the non-circular wheels’ profiles enveloping the generating pinion. The proposed method ensures favorable conditions for transferring motion and absence of the teeth interference in any position of the mechanism. The method is fairly simple and could be used by a wide range of the design engineers.
EDN: QGWECG, https://elibrary/qgwecg
References
[1] Artobolevskiy I.I., Levitskiy N.I., Cherkudinov S.A. Sintez ploskikh mekhanizmov [Synthesis of plane mechanisms]. Moscow, Fizmatgiz Publ., 1959. 1084 p. (In Russ.).
[2] Litvin F.L. Teoriya zubchatykh zatsepleniy [Theory of toothed gearing]. Moscow, Nauka Publ., 1968. 584 p. (In Russ.).
[3] Kireev S.O., Padalko N.A. Numerical determination of the coordinates of the involute tooth contour. Calculation of tooth parameters for manufacturing of oval gears. Izvestiya VUZov. Severo-Kavkazskiy region. Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus region. Technical Sciences], 2000, no. 3, pp. 34–36. (In Russ.).
[4] Padalko A.P., Padalko N.A. Gear transmission with non-circular wheel. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines], 2013, no. 2, vol. 11, pp. 89–96. (In Russ.).
[5] Hasse T. Über die vielfältigen Möglichkeiten, unrunde Zahnräder für typische Getriebeaufgaben der Technik optimal auszulegen. URL: http://www.optimasimula.de/downloads/moeglichkeiten_unrundraeder.pdf (accessed: 18.04.2022). (In Russ.).
[6] Laczik B. Design and manufacturing of non-circular gears by given transfer function. URL: http://www.hexagon.de/pdf/noncgear.pdf (accessed: 26.04.2022).
[7] Volkov G.Yu., Fadyushin D.V., Golovanev V.A. Profiling of non-circular gears for gears with a fixed axial distance using the virtual running-in method. Sborka v mashinostroenii, priborostroenii [Assembling in Mechanical Engineering and Instrument-Making], 2022, vol. 23, no. 10, pp. 452–458. (In Russ.).
[8] An I-Kan. Sintez, geometricheskie i prochnostnye raschety planetarnykh mekhanizmov s nekruglymi zubchatymi kolesami rotornykh gidromashin. Diss. dok. tekh. nauk [Synthesis, geometrical and strength calculations of planetary mechanisms with non-circular gears of rotary hydraulic machines. Doc. tech. sci. diss.]. Tomsk, TPU Publ., 2001. 235 p. (In Russ.).
[9] Mundo D. Geometric design of a planetary gear train with non-circular gears. Mech. Mach. Theory, 2006, vol. 41, no. 4, pp. 456–472, doi: https://doi.org/10.1016/j.mechmachtheory.2005.06.003
[10] Lin C., Xia X., Li P. Geometric design and kinematics analysis of coplanar double internal meshing non-circular planetary gear train. Adv. Mech. Eng., 2018, vol. 10, no. 12, doi: https://doi.org/10.1177/1687814018818910
[11] Ding H. Application of non-circular planetary gear mechanism in the gear pump. Adv. Mater. Res., 2012, vol. 591–593, pp. 2139–2142, doi: https://doi.org/10.4028/www.scientific.net/AMR.591-593.2139
[12] Zhang B., Song S., Jing C. et al. Displacement prediction and optimization of a non-circular planetary gear hydraulic motor. Adv. Mech. Eng., 2021, vol. 13, no. 11, doi: https://doi.org/10.1177/16878140211062690
[13] Zhang B., Song S., Jing C. et al. Displacement prediction and optimization of a non-circular planetary gear hydraulic motor. Adv. Mech. Eng., 2021, vol. 13, no. 11, doi: https://doi.org/10.1177/16878140211062690
[14] Volkov G.Yu., Kurasov D.A., Gorbunov M.V. Geometric synthesis of the planetary mechanism for a rotary hydraulic machine. Vestnik mashinostroeniya, 2017, no. 10, pp. 10–15. (In Russ.). (Eng. version: Russ. Engin. Res., 2018, vol. 38, no. 1, pp. 1–6, doi: https://doi.org/10.3103/S1068798X18010161)
[15] Volkov G.Yu., Smirnov V.V., Gorbunov M.V. Technique of geometrical calculation and profiling of ring gears of the planetary rotor hydraulic machine. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal], 2018, no. 9, pp. 32–37, doi: https://doi.org/10.14489/hb.2018.09.pp.032-037 (in Russ.).
[16] Volkov G., Fadyushin D., Vedernikov M. Geometric calculation of non-circular gear segments of the planetary mechanism in rotary hydraulic machines. E3S Web Conf., 2023, vol. 389, art. 01017, doi: https://doi.org/10.1051/e3sconf/202338901017
[17] Mallik A.K., Ghosh A., Dittirich G. Kinematic analysis and synthesis of mechanisms. CRC, 1994. 688 p.
[18] Artobolevskiy I.I. Teoriya mekhanizmov i mashin [Theory of Mechanisms and Machines]. Moscow, Nauka Publ., 1988. 640 p. (In Russ.).
[19] Volkov G.Yu., Fadyushin D.V. Geometric calculation of the planetary mechanism with the equal number of teeth of the external and internal sun gear. Spravochnik. Inzhenernyy zhurnal [Handbook. An Engineering Journal], 2020, no. 3, pp. 27–31, doi: https://doi.org/10.14489/hb.2020.03.pp.027-031 (In Russ.).