Force feedback use when moving load by a pair of manipulators
Authors: Sorokin N.F., Gavryushin S.S. | Published: 10.01.2023 |
Published in issue: #1(754)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: group control, manipulator control system, tensor representation, position force control, screw calculus |
The paper considers problem of joint cargo transfer by a pair of manipulators. In accordance with the compliant control paradigm, a solution is proposed that includes the force feedback counteracting the increase in forces in the load-manipulator system. Using tensor representation and screw calculus, the one-dimensional problem is generalized to the multidimensional case. Computer model of the system under study was built and computational experiments were carried out using the Gazebo robotic simulation package. The results obtained confirm the prospects of the position force approach to solving the group control problems.
References
[1] Sarkar S., Kar I.N. Formation control of multiple groups of robots. 52nd IEEE Conf. on Decision and Control, 2013, pp. 1466–1471, doi: https://doi.org/10.1109/CDC.2013.6760089
[2] Zolotukhin Yu.N., Kotov K.Yu., Mal’tsev A.S. et al. Coordinated control of the mobile robots group for cargo transportation. Vychislitel’nye tekhnologii [Computational Technologies], 2016, vol. 21, no. 1, pp. 70–79. (In Russ.).
[3] Leskov A.G., Moroshkin S.D. Studying dynamics of manipulation robot control system with force feedback telepresence. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2013, no. 2, pp. 66–78. (In Russ.).
[4] Kobayashi F., Ikai G., Fukui W. et al. Two-fingered haptic device for robot hand teleoperation. J. Robot, 2011, vol. 2011, art. 419465, doi: https://doi.org/10.1155/2011/419465
[5] Serebrennyy V.V., Boshlyakov A.A., Ogorodnik A.I. Impedance position-force control in robots and mechanisms with kinematic closed chains. Tekhnologii additivnogo proizvodstva [Additive Fabrication Technology], 2019, vol. 1, no. 1, pp. 24–35. (In Russ.).
[6] Egorov I.N. Pozitsionno-silovoe upravlenie robototekhnicheskimi i mekhatronnymi ustroystvami [Position-force control on robotics and mechatronic systems]. Vladimir. Izd-vo VlGU Publ., 2010. 192 p. (In Russ.).
[7] Leskov A.G., Kalevatykh I.A. Experimental studies of algorithms for control of coordinated motion of two-manipulator cooperative system. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2012, no. 4, pp. 33–43. (In Russ.).
[8] Siciliano B., Khatib O., eds. Springer handbook of robotics. Springer. 2008. 1611 p.
[9] Antonov A.V. Razrabotka mekhanizmov parallel’noy struktury s dvigatelyami, ustanovlennymi na osnovanii vne rabochey zony. Diss. kand. tekh. nauk [Design of parallel mechanisms with engines based out the working zone. Kand. tech. sci. diss.]. Moscow. IMASh RAN Publ., 2018. 123 p. (In Russ.).
[10] Glazunov V.A., ed. Novye mekhanizmy v sovremennoy robototekhnike [New mechanisms in modern robotics]. Moscow. Tekhnosfera Publ., 2018. 316 p. (In Russ.).
[11] Savin S.I., Vorochaeva L.Yu. Using neural networks to predict the normal reactions of a walking robot. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [Proceedings of the Southwest State University], 2019, vol. 23, no. 4, pp. 8–18, doi: https://doi.org/10.21869/2223-1560-2019-23-4-8-18 (in Russ.).
[12] Zenkevich S.L., Yushchenko A.S. Osnovy upravleniya manipulyatsionnymi robotami [Fundamentals of control on manipulating robots]. Moscow. Bauman MSTU Publ., 2004. 480 p. (In Russ.).
[13] Sorokin F.D. Direct tensor representation of the equations of large displacements of a flexible rod using the Euler rotation vector. Izvestiya RAN. MTT, 1994, no. 1, pp. 164–168. (In Russ.).
[14] Sorokin N.F. Tensor signals in automatic positioning control systems for mobile object. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 1, doi: http://dx.doi.org/10.18698/2308-6033-2022-1-2147 (in Russ.).
[15] Golovanov N.N. Geometricheskoe modelirovanie [Geometric modelling]. Moscow, Fizmatlit Publ., 2002. 472 p. (In Russ.).
[16] Dimentberg F.M. Vintovoe ischislenie i ego prilozheniya k mekhanike [Theory of screws and its application in mechanics]. Moscow. Nauka Publ., 1965. 200 p. (In Russ.).
[17] Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve [Second-rank vectors and tensors in 3D space]. Sankt-Petersburg. Izd-vo SPbGTU Publ., 1992. 276 p. (In Russ.).