Bridge crane adaptive control in transferring a long vertically positioned load
Authors: Kruglov S.P., Kovyrshin S.V. | Published: 02.11.2023 |
Published in issue: #11(764)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: bridge crane, control automation, adaptive control, current parametric identification algorithm, control system stability |
The paper considers a problem of automating control over the bridge crane trolley when transferring a long vertically positioned load under conditions of partial uncertainty in the current time of the control system parameters, load and uncontrolled disturbances. Such problems include transporting piles at the construction sites, turbine rotors at the hydroelectric power plants and other structures, where it is necessary to accurately position the transported load lower edge at the target point. A solution to the problem is proposed based on the two-pendulum model of the bridge crane suspension system with direct monitoring of the load motion. To build the adaptive control system, a scheme was introduced with an algorithm of current parametric identification, an implicit reference model and the “simplified” adaptability conditions. Based on analyzing stability in the closed-loop control system, requirements to the reference model were determined. Results of the proposed solution model studies are presented with significant variations in the transported load and control system parameters and under action of disturbances and noise from the information sensors.
References
[1] Aleksandrov M.P., Kolobov L.N., Lobov N.A. et al. Gruzopodemnye krany [Lifting cranes]. Moscow, Mashinostroenie Publ., 1986. 400 p. (In Russ.).
[2] Kabanov S.A., Nikulin E.N., Yakushev B.E. et al. Optimal control over load movement with bridge crane. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2011, vol. 54, no. 5, pp. 56–65. (In Russ.).
[3] Rogova N.S., Yurkevich V.D. Design of control for load movement by overhead crane. Sbornik nauchnykh trudov NGTU [Transaction of Scientific Papers of the Novosibirsk State Technical University], 2015, no. 3, pp. 43–54, doi: https://doi.org/10.17212/2307-6879-2015-3-43-54 (in Russ.).
[4] Antipov A.S., Krasnova S.A Stabilization system of convey-crane position via sigmoidal function. Mekhatronika, avtomatizatsiya, upravlenie, 2019, vol. 20, no. 10, pp. 609–614, doi: https://doi.org/10.17587/mau.20.609-614 (in Russ.).
[5] Kruglov S.P., Aksamentov D.N. A method of adaptive control of an overhead crane with direct tracking of the load movement. Mekhatronika, avtomatizatsiya, upravlenie, 2020, vol. 21, no. 12, pp. 682–688, doi: https://doi.org/10.17587/mau.21.682-688 (in Russ.).
[6] Qian D., Yi J. Hierarchical sliding mode control for under-actuated cranes. Springer, 2015. 199 p.
[7] Sun N., Fang Y., Wu Y. et al. Adaptive positioning and swing suppression control of underactuated cranes exhibiting double-pendulum dynamics: theory and experimentation. Proc. YAC, 2016, pp. 87–92, doi: https://doi.org/10.1109/YAC.2016.7804870
[8] Zegzhda S.A., Shatrov E.A., Yushkov M.P. Suppression of oscillation of a trolley with a double pendulum by means of control of its acceleration. Vestnik SPbGU. Ser. 1. Matematika. Mekhanika. Astronomiya [Vestnik of St Petersburg University. Series 1. Mathematics. Mechanics. Astronomy], 2016, vol. 3, no. 4, pp. 683–688, doi: https://doi.org/10.21638/11701/spbu01.2016.418 (in Russ.).
[9] Ramli L., Mohamed Z., Abdullahi A.M. et al. Control strategies for crane systems: a comprehensive review. Mech. Syst. Signal Process., 2017, vol. 95, pp. 1–23, doi: https://dx.doi.org/10.1016/j.ymssp.2017.03.015
[10] Kruglov S.P., Kovyrshin S.V., Aksamentov D.N. Adaptive control of two-pendulum suspension of overhead crane. Mekhatronika, avtomatizatsiya, upravlenie, 2022, vol. 23, no. 9, pp. 451–461, doi: https://doi.org/10.17587/mau.23.451-461 (in Russ.).
[11] Kruglov S.P. Usloviya adaptiruemosti sistem upravleniya s identifikatorom i etalonom [Conditions for adaptability of control systems with identifier and benchmark]. Lap Lambert Academic Publ., 2012. 125 p. (In Russ.).
[12] Kruglov S.P. Convergence of the residual identification error in the control system with parametrical adaptation. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information Technology and Mathematical Modeling in the Management of Complex Systems], 2019, no. 1. URL: https://ismm.irgups.ru/sites/default/files/articles_pdf_files/kruglov_shodnevyazkiidentif_0.pdf (in Russ.).
[13] Sivukhin D.V. Obshchiy kurs fiziki. Vol. 1: Mechanics, Moscow, Fizmatlit, Izd-vo MFTI, 2005. 560 p. (In Russ.).
[14] Bronnikov A.M., Kruglov S.P., Maksimov I.S. Adaptivnaya sistema upravleniya s identifikatorom i neyavnoy etalonnoy modelyu pri vremennykh zaderzhkakh informatsii v sisteme upravleniya [Adaptive control system with identifier and implicit pattern model at temporary delays of information in control system]. Patent RU 2192031. Appl. 05.02.2001, publ. 27.10.2002. (In Russ.).
[15] Astrom K.J., Wittenmark B. Adaptive control. Dover Publ., 2008.
[16] ГОСТ 3332–54. Краны мостовые электрические общего назначения грузоподъемностью от 5 до 50 т среднего и тяжелого режимов работы. Основные параметры и размеры. Москва, Издательство стандартов. 1974. 8 с.
[17] ГОСТ 6627–74. Крюки однорогие. Заготовки. Типы. Конструкции и размеры. Москва, Издательство стандартов. 1974. 7 с.
[18] Zhmud V.A., Kuznetsov K.A., Kondratyev N.O. et al. Accelerometer and gyroscope MPU6050; the first inclusion on STM32 and the study of its indications in statics. Avtomatika i programmnaya inzheneriya [Automatics & Software Enginery], 2018, no. 3, pp. 9–22. URL: www.jurnal.nips.ru/sites/default/files/AaSI-3-2018-1.pdf (in Russ.).