Principles of intermodular docking of the group mobile robotic systems
Authors: Sayapin S.N. | Published: 12.09.2024 |
Published in issue: #9(774)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: mobile robots docking/undocking, docking systems, modular robots group connection |
One of the important tasks in organizing the group (swarm) mobile modular robotic systems lies in design and development of the simple and reliable reusable systems for docking/undocking the modules. Depending on the docking system operation, such systems could be single-use or reusable and provide the connection automatic docking/undocking upon command from the control system. Besides, the docking/undocking systems could be semi-automatic, when the modules mobility is additionally used. If necessary, the modules’ docking/undocking operation modules could be carried out manually by an operator or a manipulator to simplify the robotic systems. In all cases, the connection unit after docking should provide high rigidity and exclude uncontrolled mobility of the elements being docked. In this regard, selection of basic types of the docking/undocking systems for the mobile modular robots combined into the active group structures is an urgent task. The paper provides an overview of known principles and devices that could be introduced in the modular mobile robots docking; their classification is presented. Docking devices are comparatively analyzed. Basic samples for solving the group problems are recommended. The paper presents new original systems for the module docking units with formation of group structures for various applications. The presented systems for docking/undocking the modular mobile robots are making it possible to create group (swarm) active multifunctional robotic structures capable of solving various problems in the extreme and a priori uncertain conditions.
EDN: QJWYLX, https://elibrary/qjwylx
References
[1] Yogeswaran M., Ponnambalam S.G. Swarm robotics: an extensive research review. In: Advanced knowledge application in practice. IntechOpen, 2010, pp. 259–277, doi: https://doi.org/10.5772/10361
[2] Larsen J.C. Locomotion through morphosis. PhD thesis. University of Southern Denmark, 2013. 189 p.
[3] Kernbach S., ed. Handbook of collective robotics. Singapore, Jenny Stanford, 2013. 962 p.
[4] Sayapin S.N. Mobile parallel robot-manipulator "Octahedral dodekapod": history, present and future. Problemy mashinostroeniya i avtomatizatsii [Engineering & Automation Problems], 2018, no. 3, pp. 36–60. (In Russ.).
[5] Alattas R.J., Patel S., Sobh T.M. Evolutionary modular robotics: Survey and analysis. J. Intell. Robot. Sys., 2019, vol. 95, no. 7, pp. 815–828, doi: https://doi.org/10.1007/s10846-018-0902-9
[6] Seo J., Paik J., Yim M. Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton. Syst., 2019, vol. 2 pp. 63–88, doi: https://doi.org/10.1146/annurev-control-053018-023834
[7] Majed A. Stratégies auto-reconfigurables basées sur la détection pour les systèmes robotiques modulaires autonomies. Doc. diss. ENSTA, 2022. 117 p.
[8] Liang G., Tu Y. Decoding modular reconfigurable robots: a survey on mechanisms and design. arXiv:2310.09743, doi: https://doi.org/10.48550/arXiv.2310.09743
[9] Gabrich B.T. Flying modular robots: from self-assembling structures in midair to embedding grasping capabilities. PhD thesis. University of Pennsylvania, USA, 2021. 145 p.
[10] Mashoshin A.I., Skobelev P.O. Application of multi-agent technology for managing a group of unmanned underwater vehicles. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki [Izvestiya SFEDU. Engineering Sciences], 2016, no. 1, pp. 45–59. (In Russ.).
[11] Chen F.Y. Gripping mechanisms for industrial robots. Mech. Mach. Theory, 1982, vol. 17, no. 5, pp. 299–311, doi: https://doi.org/10.1016/0094-114X(82)90011-8
[12] Oteniy Ya.N., Olshtynskiy P.V. Vybor i raschet zakhvatnykh ustroystv promyshlennykh robotov [Selection and calculation of gripping devices for industrial robots]. Volgograd, VolgGTU Publ., 2000. 65 p. (In Russ.).
[13] Sandin P.E. Robot mechanisms and mechanical devices illustrated. McGraw-Hill, 2003. 299 p.
[14] Fantoni G., Santochi M., Dini G. et al. Grasping devices and methods in automated production processes. CIRP Annals, 2014, vol. 63, no. 2, pp. 679–701, doi: https://doi.org/10.1016/j.cirp.2014.05.006
[15] Mondada F., Bonani M., Magnenat S. et al. Physical connections and cooperation in swarm robotics. IAS8, 2004, pp. 53–60.
[16] Sayapin S.N. Analysis of use of platonic solids in swarm robotic systems with parallel structure based on SEMS. In: Smart electromechanical systems. Springer, 2019, pp. 45–68, https://doi.org/10.1007/978-3-319-99759-9_5
[17] Longo D., Muscato G., Marques L. et al. Adhesion techniques for climbing robots: State of the art and experimental considerations. In: Advances in mobile robotics. World Scientific, 2008, pp. 6–28, doi: https://doi.org/10.1142/9789812835772_0003
[18] Sayapin S.N. Analiz i sintez raskryvaemykh na orbite pretsizionnykh krupnogabaritnykh mekhanizmov i konstruktsiy kosmicheskikh radioteleskopov lepestkovogo tipa. Diss. dok. tekh. nauk [Analysis and synthesis of on-orbit precision large-size mechanisms and structures of space radio telescopes of petal type. Doc. tech. sci. diss.]. Moscow, IMASh RAN Publ., 2003. 457 p. (In Russ.).
[19] Cloyd R.A., Weddendorf B. Passive capture joint with three degrees of freedom. Paten US 6186693. Appl. 07.12.1998, publ. 13.02.2001.
[20] Delrobaei M., McIsaac K.A. Connection mechanism for autonomous self-assembly in mobile robots. IEEE Trans. Robot., 2009, vol. 25, no. 6, pp. 1413–1419, doi: https://doi.org/10.1109/TRO.2009.2030227
[21] Li D., Fu H., Wang W. Ultrasonic based autonomous docking on plane for mobile robot. ICAL, 2008, pp. 1396–1401, doi: https://doi.org/10.1109/ICAL.2008.4636372
[22] Sayapin S.N. Rekonfiguriruemyy modulnyy robot i sposob organizatsii dvizheniy i mezhmodulnogo vzaimodeystviya rekonfiguriruemogo modulnogo robota [Reconfigurable modular robot and method for organizing movements and intermodular interaction of reconfigurable modular robot]. Patent RF 2801332. Appl. 08.07.2022, publ. 07.08.2023. (In Russ.).