Influence of the tool vibration on the part surface in longitudinal turning
Authors: Zakovorotny V.L., Gvindzhiliya V.E. | Published: 17.09.2024 |
Published in issue: #9(774)/2024 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: dynamic cutting system, vibration disturbances, surface geometric characteristics |
Dynamic cutting system is exposed to disturbances depending on the machine state and its accuracy. The process of chip formation due to the sliding surfaces periodicity generates vibrations. Controlled vibrations are introduced into the cutting zone to improve machining. However, any consensus on the vibration effect on the dynamic system state and the part quality indicators is missing. This is largely because the studies are not disclosing internal structure of the disturbance interaction with the dynamic system, as well as its transformation into the part geometric characteristics. The paper presents results of studying a dynamic cutting system disturbed by the vibration effects. Mathematical simulation is carried out, the disturbances effect on the system properties and the part geometric characteristics is described. Three frequency ranges are considered: low-frequency limited from above by the subsystem natural frequencies, mid-frequency including the subsystem natural frequencies and high-frequency lying outside the subsystem passband. The vibration influence on parametric self-excitation, formation of the attractive sets of deformations, vibration stabilization, etc. is studied. Simulation results are making it possible to determine new approaches to increasing the machining efficiency. Besides, they are also useful in constructing a digital model of the cutting process dynamics.
EDN: IIFIPV, https://elibrary/iifipv
References
[1] Tobias S.A., Fishwick W. Theory of regenerative machine tool chatter. The Engineer, 1958, vol. 205, no. 7, pp. 199–203.
[2] Merrit H.E. Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research. J. Eng. Ind., 1965, vol. 87, no. 4, pp. 447–454, doi: https://doi.org/10.1115/1.3670861
[3] Spacek O.L., Danek J.T. Selbsterregte Schwingungen an Werkzeugmaschinen. Berlin, VEB Verlag Technik, 1962, pp. 247–255.
[4] Tlusty J., Ismail F. Basic non–linearity in machining chatter. CIRP Annals, 1981, vol. 30, no. 1, pp. 299–304, doi: http://dx.doi.org/10.1016/S0007-8506(07)60946-9
[5] Hanna N.H., Tobias S.A. Theory of nonlinear regenerative chatter. J. Eng. Ind., 1974, vol. 94, no. 1, pp. 247–255, doi: https://doi.org/10.1115/1.3438305
[6] Wahi P., Chatterjee A. Self-interrupted regenerative metal cutting in turning. Int. J. Non Linear Mech., 2008, vol. 43, no. 2, pp. 111–123, doi: http://dx.doi.org/10.1016/j.ijnonlinmec.2007.10.010
[7] Stepan G., Szalai R., Insperger T. Nonlinear dynamics of high-speed milling subjected to regenerative effect. In: Nonlinear dynamics of production systems. Wiley, 2004, pp. 111–128, doi: http://dx.doi.org/10.1002/3527602585.ch7
[8] Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes. Int. J. Bifurcat. Chaos, 2005, vol. 15, no. 9, pp. 2783–2798, doi: https://doi.org/10.1142/S0218127405013642
[9] Paris H., Brissaud D., Gouskov A. et al. Influence of the ploughing effect on the dynamic behaviour of the self-vibratory drilling head. CIRP Annals, 2008, vol. 57, no. 1, pp. 385–388, doi: https://doi.org/10.1016/j.cirp.2008.03.101
[10] Gouskov A., Gouskov M., Lorong Ph. et al. Influence of the clearance face on the condition of chatter self–excitation during turning. Int. J. Mach. Mach. Mater., 2017, vol. 19, no. 1, pp. 17–40, doi: https://doi.org/10.1504/IJMMM.2017.081186
[11] Voronov S.A., Kiselev I.A. Nonlinear problems of cutting process dynamics. Mashinostroenie i inzhenernoe obrazovanie [Mechanical Engineering and Engineering Education], 2017, no. 2, pp. 9–23. (In Russ.).
[12] Guskov M., Din Dyk T. et al. Modeling and investigation of the stability of a multicutter turning process by a trace. Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 3, pp. 19–27, doi: https://doi.org/10.31857/S023571190000533-7 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., vol. 47, no. 4, pp. 317–323, doi: https://doi.org/10.3103/S1052618818040052)
[13] Gouskov A., Panovko G., Shokhin A.E. Dynamics of the rotor system of a vibrational–centrifugal separator with an elastic vibration limiter. J. Mach. Manuf. Reliab., 2023, vol. 51, no. 8, pp. 733–745, doi: http://dx.doi.org/10.3103/S105261882208009X
[14] Altitias Y., Budak E. Analytical prediction of stability lobes in milling. CIRP Annals, 1995, vol. 44, no. 1, pp. 357–362, doi: https://doi.org/10.1016/S0007-8506(07)62342-7
[15] Altitias Y., Weck M. Chatter stability of metal cutting and grinding. CIRP Annals, 2004, vol. 53, no. 2, pp. 619–642, doi: https://doi.org/10.1016/S0007-8506(07)60032-8
[16] Insperger T., Stepan G. Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng., 2002, vol. 55, no. 5, pp. 503–518, doi: https://doi.org/10.1002/nme.505
[17] Kudinov V.A. Dinamika stankov [Dynamics of machines]. Moscow, Mashinostroenie Publ., 1967. 359 p. (In Russ.).
[18] Veyts V.L., Vasilkov D.V. Dynamics, modelling and quality assurance problems in machining of low rigidity workpieces. STIN, 1999, no. 6, pp. 9–13. (In Russ.).
[19] Zakovorotnyy V.L., Gvindzhiliya V.E. The influence of fluctuation on the shape-generating trajectories stability with a turning. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences], 2017, no. 2, pp. 52–61, doi: https://doi.org/10.17213/0321-2653-2017-2-52-61 (in Russ.).
[20] Zakovorotny V.L., Lukyanov A.D., Gubanova A.A. et al. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting. J. Sound Vib., 2016, vol. 368, pp. 174–190, doi: http://dx.doi.org/10.1016/j.jsv.2016.01.020
[21] Zakovorotny V. Bifurcations in the dynamic system of the mechanic processing in metal-cutting tools. WSEAS Trans. Appl. Theor. Mech., 2015, vol. 10, pp. 102–116.
[22] Zakovorotnyi V.L., Bykador V.S. Cutting-system dynamics. Russ. Engin. Res., 2016, vol. 36, no. 7, pp. 591–598, doi: https://doi.org/10.3103/S1068798X16070182
[23] Grabec I. Chaos generated by the cutting process. Phys. Lett. A, 1986, vol. 117, no. 8, pp. 384–386, doi: http://dx.doi.org/10.1016/0375-9601(86)90003-4
[24] Wiercigroch M., Budak E. Sources of nonlinearities, chatter generation and suppression in metal cutting. Phil. Trans. Roy. Soc. London A: Math. Phys. Engin. Sci., 2001, vol. 359, no. 1781, pp. 663–693, doi: http://dx.doi.org/10.1098/rsta.2000.0750
[25] Wiercigroch M., Krivtsov A.M. Frictional chatter in orthogonal metal cutting. Philos. Trans. Royal Soc. A, 2001, vol. 359, pp. 713–738, doi: https://doi.org/10.1098/rsta.2000.0752
[26] Rusinek R., Wiercigroch M., Wahi P. Influence of tool flank forces on complex dynamics of a cutting process. Int. J. Bifurcat. Chaos, 2014, vol. 24, no. 9, pp. 189–201, doi: http://dx.doi.org/10.1142/S0218127414501156
[27] Rusinek R., Wiercigroch M., Wahi P. Modelling of frictional chatter in metal cutting. Int. J. Mech. Sci., 2014, vol. 89, pp. 167–176, doi: https://doi.org/10.1016/j.ijmecsci.2014.08.020
[28] Shao Y.F., Ding H. Evaluation of gravity effects on the vibration of fluid-conveying pipes. Int. J. Mech. Sci., 2023, vol. 248, no. 5, art. 108230, doi: http://dx.doi.org/10.1016/j.ijmecsci.2023.108230
[29] Zakovorotny V.L., Gubanova A.A., Lukyanov A.D. Attractive manifolds in end milling. Russ. Engin. Res., 2017, vol. 37, no. 2, pp. 158–163, doi: https://doi.org/10.3103/S1068798X17020198
[30] Zakovorotnyy V.L., Fam D.T., Fam T.Kh. Parametrical phenomena under on-machine process control. Vestnik DGTU [Vestnik of Don State Technical University], 2012, vol. 12, no. 7, pp. 52–61. (In Russ.).
[31] Zakovorotnyy V.L., Fam T.Kh. Parametric self-excitation of cutting dynamic system. Vestnik DGTU [Vestnik of Don State Technical University], 2013, vol. 13, no. 5–6, pp. 97–103, doi: https://doi.org/10.12737/1286 (in Russ.).
[32] Zhou G., Yuan M., Feng F. et al. A new algorithm for chatter quantification and milling instability classification based on surface analysis. Mech. Syst. Signal Process., 2023, vol. 204, art. 110816, doi: http://dx.doi.org/10.1016/j.ymssp.2023.110816
[33] Zakovorotnyy V.L., Gvindzhiliya V.E. The influence of the vibration on the tool shape-generating trajectories when turning. Obrabotka metallov [Metal Working and Material Science], 2019, vol. 21, no. 3, pp. 42–58, doi: http://dx.doi.org/10.17212/1994-6309-2019-21.3-42-58 (in Russ.).
[34] Zakovorotny V.L., Gvindzhiliya V.E. Influence of spindle wobble in turning on the workpiece’s surface topology. Russ. Engin. Res., 2018, vol. 38, no. 10, pp. 818–823, doi: http://dx.doi.org/10.3103/S1068798X18100192
[35] Zakovorotny V.L., Gvindzhiliya V.E. Influence of spindle wobble in a lathe on the tool’s deformational–displacement trajectory. Russ. Engin. Res., 2018, vol. 38, no. 8, pp. 623–631, doi: http://dx.doi.org/10.3103/S1068798X1808018X
[36] Poduraev V.N. Obrabotka rezaniem s vibratsiyami [Processing by cutting with vibrations.]. Moscow, Mashinostroenie Publ., 1970. 350 p. (In Russ.).
[37] Kumabe D. Vibratsionnoe rezanie [Vibrational cutting]. Moscow, Mashinostroenie Publ., 1985. 424 p. (In Russ.).
[38] Voronin A.A., Markov A.I. Influence of ultrasonic vibrations on the process of cutting of heat-resistant alloys. Stanki i instrument, 1960, no. 11, pp. 15–18. (In Russ.).
[39] Markov A.I. Optimisation and control of the ultrasonic cutting process. Vestnik mashinostroeniya, 1996, no. 10, pp. 19–22. (In Russ.).
[40] Tkachenko I.G., Agapov S.I. Determining the optimal amplitudes and directions of ultrasound vibrations in cutting small-module gears. Vestnik mashinostroeniya, 2010, no. 2, pp. 48–50. (In Russ.). (Eng. version: Russ. Engin. Res., 2010, vol. 30, no. 2 pp. 141–143, doi: https://doi.org/10.3103/S1068798X10020103)
[41] Agapov S.I., Golovkin V.V. Povyshenie effektivnosti mekhanicheskoy obrabotki putem primeneniya ultrazvuka [Improving the efficiency of machining by applying ultrasound]. Samara, Izd-vo SNTs Publ., 2010. 134 p. (In Russ.).
[42] Agapov S.I. Hobbing of small-module gears in the presence of ultrasound. Vestnik mashinostroeniya, 2008, no. 4, pp. 66–68. (In Russ.). (Eng. version: Russ. Engin. Res., 2008, vol. 28, no. 4, pp. 343–345, doi: https://doi.org/10.3103/S1068798X08040138)
[43] Astashev V.K. Influence of ultrasonic cutter oscillations on the cutting process. Problemy mashinostroeniya i nadezhnosti mashin, 1992, no. 3, pp. 81–86. (In Russ.).
[44] Martynov V.D., Zakovorotnyy V.L., Chernya N.N. Determination of optimal vibrations during thread cutting. Akustika i ultrazvukovaya tekhnika, 1966, no. 6, pp. 25. (In Russ.).
[45] Astashev V.K., Semenova E.B. The dynamics of an ultrasonic drawing process. Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 1, pp. 56–60. (In Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2013, vol. 42, no. 1, pp. 45–48, doi: https://doi.org/10.3103/S1052618813010020)
[46] Astashev V.K. On nonlinear dynamics of ultrasonic technological processes and systems. Vestnik nauchno-tekhnicheskogo razvitiya, 2007, no. 2, pp. 18–25. (In Russ.).
[47] Astashev V.K., Babitsky V.I. Ultrasonic cutting as a nonlinear (vibro-impact) process. Ultrasonics, 1998, vol. 36, no. 1–5, pp. 89–96, doi: https://doi.org/10.1016/S0041-624X(97)00101-7
[48] Astashev V.K., Andrianov N.A., Krupenin V.L. On autoresonant ultrasonic cutting of materials. Vestnik nauchno-tekhnicheskogo razvitiya, 2017, no. 1, pp. 3–16. (In Russ.).
[49] Astashev V.K., Andrianov N.A., Krupenin V.L. Ustroystvo dlya vozbuzhdeniya i avtomaticheskoy stabilizatsii rezonansnykh kolebaniy ultrazvukovykh system [Device for resonance vibration agitation and automatic stabilisation in ultrasonic systems]. Patent RF 2350405. Appl. 11.05.2007, publ. 27.03.2009. (In Russ.).
[50] Zakovorotnyy V.L., Olshanskiy I.F. Effect of vibration linearisation on the dynamic stability of the aids system in ultrasonic cutting. Akustika i ultrazvukovaya tekhnika, 1967, no. 6, pp. 12–19. (In Russ.).
[51] Brzhozovskiy B.M., Berkenev N.V. Ultrazvukovye tekhnologicheskie protsessy i oborudovanie v mashino- i priborostroenii [Ultrasonic technological processes and equipment in machine and instrument engineering]. Saratov, Izd-vo SGTU, 2009. 342 p. (In Russ.).
[52] Kozochkin M.P., Solis N.V. Research correlation of vibrations at cutting with quality of received surface. Vestnik RUDN. Ser. Inzhenernye issledovaniya [RUDN Journal of Engineering Research], 2009, no. 2, pp. 16–23. (In Russ.).
[53] Zakovorotnyy V.L., Gvindzhiliya V.E. Link between the self-organization of dynamic cutting system and tool wear. Izvestiya vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika [Izvestiya VUZ. Applied Nonlinear Dynamics], 2020, vol. 28, no. 1, pp. 46–61, doi: https://doi.org/10.18500/0869-6632-2020-28-1-46-61 (in Russ.).
[54] Antsev A.V., Dang Kh.Ch. Tool life prediction by vibration measurement during milling. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2018, no. 7, pp. 3–11. (In Russ.).
[55] Bochner S. Harald Bohr. Bull. Amer. Math. Soc., 1952, vol. 58, no. 1, pp. 72–75.
[56] Zakovorotnyy V.L., Gvindzhiliya V.E. The properties of attracting sets of tool deformation displacements in the trajectories of the shape-generating movements in turning. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2022, no. 3, pp. 15–30, doi: http://dx.doi.org/10.18698/0536-1044-2022-3-15-30 (in Russ.).
[57] Khusu A.P., Vitenberg Yu.R., Palmov V.A. Sherokhovatosti poverkhnostey. Teoretiko-veroyatnostnyy podkhod [Surface roughness. Theoretical and probabilistic approach]. Moscow, Nauka Publ., 1975. 343 p. (In Russ.).