Structural optimization in designing the prefabricated carbide tools with the cutting edge of a shaped profile
Authors: Chaevskiy P.A., Grubyi S.V. | Published: 20.01.2025 |
Published in issue: #1(778)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: structural optimization, assembled tool, replaceable multi-faceted insert, additive criterion, shaped profile, shaped tool |
The paper proposes a method for structural optimization in designing the assembled carbide tools with the shaped cutting edges making it possible to reduce production costs by unifying the range of workpieces, holders and bodies of the special and specialized cutting tools, taking into account production capabilities of a wide range of the machine-engineering enterprises. It considers the optimization criteria and provides the criteria quantitative assessment. Designs of the prefabricated tools with the shaped cutting edges using the standardized workpieces of the replaceable multi-faceted inserts are developed.
EDN: FYZZVY, https://elibrary/fyzzvy
References
[1] Ryzhov E.V., Averchenkov V.I. Optimizatsiya tekhnologicheskikh protsessov mekhanicheskoy obrabotki [Optimisation of technological processes of mechanical processing]. Kiev, Naukova dumka Publ., 1989. 192 p. (In Russ.).
[2] Grubyy S.V. Matematicheskoe modelirovanie i optimizatsiya mekhanicheskoy obrabotki [Mathematical modelling and optimization of mechanical processing]. Moscow, Vologda, Infra-Inzheneriya Publ., 2022. 212 (In Russ.).
[3] Skuratov D.L., Trusov V.N., Lastochkin D.A. Optimizatsiya tekhnologicheskikh protsessov v mashinostroenii [Optimisation of technological processes in mechanical engineering.]. Samara, Izd-vo SGAU Publ., 2006. 86 (In Russ.).
[4] Selivanov S.G., Gabitova G.F., Yakhin A.I. et al. Cascade optimization method technological process routes in automated systems production planning with using artificial neural network. Vestnik UGATU, 2014, no. 3, pp. 170–174. (In Russ.).
[5] Duyun T.A., Grinek A.V., Sakharov D.V. Modelling and optimisation of technological processes of product manufacturing using the method of dynamic programming. Vestnik BGTU im. V.G. Shukhova [Bulletin of BSTU n.a. V.G. Shukhov], 2013, no. 3, pp. 61–65. (In Russ.).
[6] Kuvshinskiy B.Yu. [System-structural approach to analysis and optimisation of technological processes of machining by cutting]. Tez. dokl. konf. Teoriya i metodika fundamentalnykh i prikladnykh nauchnykh issledovaniy [Abs. Theory and Methods of Fundamental and Applied Scientific Research Conf.]. Ekaterinburg, Aeterna Publ., 2021, pp. 44–47. (In Russ.).
[7] Özdemir M., Şahinoğlu A., Rafighi M. et al. Analysis and optimisation of the cutting parameters based on machinability factors in turning AISI 4140 steel. Can. Metall. Q., 2022, vol. 64, no. 4, pp. 407–417, doi: https://doi.org/10.1080/00084433.2022.2058154 (in Russ.).
[8] Çiftçi İ., Gökçe H. Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi method. J. Fac. Eng. Archit. Gaz., 2019, vol. 34, no. 1, pp. 201–213, doi: https://doi.org/10.17341/gazimmfd.416482 (in Russ.).
[9] Skuratov D.L., Sidorov S.Yu. The model of structurally-parametrical optimization of the technological process of mechanical treatment during the stage of designing. Vestnik SGAU [Vestnik of the Samara State Aerospace University], 2006, no. 2-2, pp. 343–346. (In Russ.).
[10] Averchenkov V.I., Averchenkov A.V., Terekhov M.V. et al. Avtomatizatsiya vybora rezhushchego instrumenta dlya stankov s ChPU [Automation of cutting tool selection for CNC machines]. Moscow, Flinta Publ., 2011. 151 p. (In Russ.).
[11] Zak Yu.A. Prikladnye zadachi mnogokriterialnoy optimizatsii [Applied problems of multicriteria optimisation]. Moscow, Ekonomika Publ., 2014. 455 p. (In Russ.).
[12] Zakuraev V.V., Shivyrev A.A. Multicriteria optimisation and control of mechanical processing on lathes with CNC. Vestnik mashinostroeniya, 2001, no. 4, p. 44–49. (In Russ.).
[13] Postnikov V.M., Spiridonov S.B. Selecting methods of the weighting factors of local criteria. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 6. URL: http://engineering-science.ru/doc/780334.html (in Russ.).
[14] Rodzin S.I. Teoriya prinyatiya resheniy: lektsii i praktikum [Decision-making theory: lectures and practice]. Taganrog, Izd-vo TTI YuFU Publ., 2010. 336 p. (In Russ.).
[15] GOST 19042–80. Plastiny smennye mnogogrannye [State standard GOST 19042–80. Throw-away (indexable) inserts. Classification. Notation. Forms]. Moscow, Standartinform Publ., 2006. 40 p. (In Russ.).
[16] Ivanova O.V. Matematicheskoe modelirovanie protsessov obrabotki materialov [Mathematical modelling of processes of processing of materials]. Orel, OGU im. I.S. Turgeneva Publ., 2019. 29 p. (In Russ.).
[17] Lisitsyna L.S. Osnovy teorii nechetkikh mnozhestv [Fundamentals of fuzzy sets theory]. Sankt-Petersburg, Universitet ITMO Publ., 2020. 74 p. (In Russ.).
[18] Kruglov V.V., Dli M.I., Golunov R.Yu. Nechetkaya logika i iskusstvennye neyronnye seti [Fuzzy logic and artificial neural networks]. Moscow, Fizmatlit Publ., 2001. 224 p. (In Russ.).