A Mathematical Model of Linear Movement of a Wheeled Vehicle with Centerpoint Suspension over Rough Surfaces
Authors: Zhileykin M.M. | Published: 20.01.2016 |
Published in issue: #1(670)/2016 | |
Category: Transportation and Power Engineering | |
Keywords: mathematical simulation, wheeled vehicle, suspension system, centerpoint suspension |
Mathematical simulation of a vehicle moving in different modes and road conditions, and overcoming typical obstacles is the main research method used in the theory of suspension in modern wheeled vehicles (WV). One of the most commonly used schemes for suspension systems in multi-axle WVs is a centerpoint suspension for two drive axles where a multi-sheet pack of metal springs is used as a balancing link. The authors developed a mathematical model of linear movement of a WV with a centerpoint suspension that takes into account the angular ductility of the spring pack. The performed mathematical simulations confirmed the validity of the developed mathematical model.
References
[1] Polungian A.A., Fominykh A.B. Matematicheskaia model’ dinamiki transmissii kolesnoi mashiny pri dvizhenii po tverdoi nerovnoi doroge [Mathematical Simulation of Dynamics of Wheeled Vehicle Transmission]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2003, no. 4, pp. 15–25.
[2] Fominykh A. B., Zheglov L. F. Matematicheskaia model’ dvizheniia polnoprivodnoi kolesnoi mashiny po doroge s tverdoi nerovnoi poverkhnost’iu [A mathematical model of an all-wheel drive vehicle’s motion on a firm rough road]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2013, no. 11. Available at: http://technomag.bmstu.ru/doc/645575.html (accessed 10 November 2015). Doi: 10.7463/1113.0645575.
[3] Kotiev G.O., Gorelov V.A. Modelirovanie priamolineinogo dvizheniia polnoprivodnoi kolesnoi mashiny po nesviaznym gruntam [Modeling of linear motion wheel all-wheel drive cars on cohesive soils]. Trudy NAMI. Avtomobili i dvigateli. Sbornik nauchnykh trudov [Proceedings of NAMI. Cars and engines. Collection of scientific papers.]. Moscow, GNTs RF FGUP «NAMI» publ., 2009, iss. 241, pp. 25–39.
[4] Kotiev G.O., Chernyshev N.V., Gorelov V.A. Matematicheskaia model’ krivolineinogo dvizheniia avtomobilia s kolesnoi formuloi 8?8 pri razlichnykh sposobakh upravleniia povorotom [Mathematical model of 8?8 vehicle curvilinear motion with various steering systems]. Zhurnal Assotsiatsii Avtomobil’nykh Inzhenerov [Zurnal AAI]. 2009, no. 2, pp. 34–40.
[5] Pacejka H.B. Tyre and Vehicle Dynamics. Oxford, Butterworth Heinemann, 2006. 672 p.
[6] Maurice J.P., Pacejka H.B. Relaxation Length Behaviour of Tyres. Vehicle System Dynamics, 2007, no. 8, 27:339–342. Doi: 10.1080/00423119708969668.
[7] Pasterkamp W.R., Pacejka H.B. The Tyre as a Sensor to Estimate Friction. Vehicle System Dynamics, 2007, no. 7, 27(5):409–422. Doi: 10.1080/00423119708969339.
[8] Pacejka H.B. Semi-empirical tyre models in Tyre and Vehicles Dynamics. Oxford, U.K., Elsevier, 2005, pp. 156–215.
[9] Proektirovanie polnoprivodnykh kolesnykh mashin [Design-wheel drive wheeled vehicles]. Ed. Polungian A.A. Moscow, Bauman Press, 2008. 432 p.