Developing an algorithm for the dynamic stabilization of 4×4 wheel tractors with individual technical-and-economic indices when plowing on slopes
Authors: Zhileykin M.M., Yagubova E.V. | Published: 04.07.2014 |
Published in issue: #7(652)/2014 | |
Category: Transportation and Power Engineering | |
Keywords: wheel tractor, slope, course and trajectory stability, dynamic stabilization, steering, torque distribution |
Working on slopes can reduce longitudinal and transverse stability of vehicles and tractors. In this case, the elastic pneumatic tires can slip, and the tractor can start sliding down the slope. This paper presents algorithms for the course and trajectory dynamic stabilization of a wheel tractor on a cross slope. The algorithms imply distributing the torque between the drive wheels as well as steering the driven wheels. The laws for detecting a skid of the rear or front axles of the tractor are described both for rectilinear and curvilinear motion. The techniques for adjusting the values of the torque and correcting the deviation angle of the longitudinal axis of the tractor from the direction of its motion are presented. A quantitative analysis of the effectiveness of the developed algorithms is performed. It is found that the most efficient approach involves both steering the wheels and adjusting the torque on the drive wheels of the tractor.
References
[1] L’ianov M.S. Uluchshenie ekspluatatsionnykh svoistv kolesnykh traktorov za schet povysheniia ikh kursovoi ustoichivosti na sklonakh. Diss. kand. tekhn. nauk [Improve the performance of wheeled tractors by increasing their exchange rate stability on slopes. Cand. tehn. sci. diss.]. Leningrad-Pushkin, 1991. 18 p.
[2] Shukhman S.B., Solov’ev V.I., Prochko E.I. Teoriia silovogo privoda koles avtomobilei vysokoi prokhodimosti [Theory power drive wheel all-terrain vehicles]. Moscow, Agrobiznestsentr publ., 2007. 336 p.
[3] Amel’chenko P.A., Ksenevich I.P., Gus’kov V.V., Iakubovich A.I. Kolesnye traktory dlia raboty na sklonakh [Wheel tractors on slopes]. Moscow, Mashinostroenie publ., 1978. 248 p.
[4] Mamiti G.I., L’ianov M.S., Pliev S.Kh., Salbieva Z.S. Ustoichivost’ kolesnogo traktora v povorote [Stability of wheel tractor on the turn]. Traktory i sel’khozmashiny [Tractors and farm machinery]. 2011, no. 8, pp. 18–21.
[5] Larin V.V. Teoriia dvizheniia polnoprivodnykh kolesnykh mashin [Theory of motion-wheel drive wheeled machines]. Moscow, Bauman Press, 2010. 391 p.
[6] Antonov D.A. Teoriia ustoichivosti dvizheniia mnogoosnykh avtomobilei [Stability theory of motion of multi-vehicle]. Moscow, Mashinostroenie publ., 1978. 216 p.
[7] Litvinov A.S. Upravliaemost’ i ustoichivost’ avtomobilia [Vehicle handling and stability]. Moscow, Mashinostroenie publ., 1971. 416 p.
[8] Zhileikin M.M., Fedotov I.V., Mardeeva L.R. Razrabotka nepreryvnogo zakona upravleniia poluaktivnoi sistemoi podressorivaniia s nechetkoi nastroikoi parametrov [Development of a continuous control law for a semi-active suspension system with a fuzzy configuration of parameters]. Nauka i obrazovanie: nauchno-tekhnicheskoe izdanie [Science and Education: Electronic Scientific and Technical Periodical]. 2013, no. 7. Available at: http://technomag.edu.ru/doc/567714.html, (accessed 5 April 2014) doi: 10.7463/0713.0567714.
[9] Ahmadi I. Development of a tractor dynamic stability index calculator utilizing some tractor specifications. Turkish Journal of Agriculture and Forestry, Tubitak. 2013, vol. 37, pp. 203–211, doi: 10.3906/tar-1103-19.
[10] Ding N., Taheri S. Application of recursive least square algorithm on estimation of vehicle sideslip angle and road friction. Mathematical Problems in Engineering, Hindawi Publishing Corporation. 2010, vol. 2010, no. 541809, pp. 1–18, doi: 1155/2010/541809.
[11] Villella M.G. Nonlinear modeling and control of automobiles with dynamic wheel-road friction and wheel torque inputs. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004, pp. 1–86. Available at: https://smartech.gatech.edu/bitstream/handle/1853/5198/Villella_Matthew_G_200405_ms.pdf (accessed 15 April 2014).
[12] Shtovba S.D. Proektirovanie nechetkikh sistem sredstvami MATLAB [Design of fuzzy systems by means of MATLAB]. Moscow, Goriachaia liniia–Telekom publ., 2007. 288 p.
[13] Kotiev G.O., Sarach E.B. Kompleksnoe podressorivanie vysokopodvizhnykh dvukhzvennykh gusenichnykh mashin [Integrated cushioning highly mobile articulated tracked vehicle]. Moscow, Bauman Press, 2010. 184 p.
[14] Kotiev G.O., Chernyshev N.V., Gorelov V.A. Matematicheskaia model’ krivolineinogo dvizheniia avtomobilia s kolesnoi formuloi 8х8 pri razlichnykh sposobakh upravleniia povorotom [Mathematical model of curvilinear motion of the car with the wheel formula 8х8 at various ways of turning control]. Zhurnal AAI [Journal AAI]. 2009, no. 2, pp. 34–40.