Control System for a Miniature In-Tube Robot
Authors: Vorotnikov S.A., Nikitin N.I., Ceccarelli M. | Published: 06.08.2015 |
Published in issue: #8(665)/2015 | |
Category: Technology and Process Machines | |
Keywords: miniature in-tube robot, modular architecture, transportation and handling de-vice, control system, fuzzy-logic controller |
The article describes a way to design the structure and control system of a miniature in-tube robot (MIR) that is used for diagnostics and local repair of inner surfaces of arbitrary orientated tubes of 50 mm diameter. It is suggested that the MIR structure consist of three modules: the base one that is connected with an operator, the remote one that is used for re-translation of the operator’s commands to control the transportation and handling device (THD) and the THD proper that is responsible for movement, diagnostics, and local repair of the tubes using specialized equipment. The THD moves using caterpillar tracks; and the in-tube space is illuminated during the process. Considering the peculiarities of the MIR movement, it is proposed to build its control system using a fuzzy-logic controller where the illumination level and THD current position are used as entry data, and the values of THD linear and rotational speeds as output data. Mathematic modelling and a full-scale experiment involving moving a mock-up THD inside a tube have been carried out to test the fuzzy logic algorithm.
References
[1] Gradetskii V.G., Kniaz’kov M.M., Kravchuk L.N., Semenov E.A. Metody dvizheniia miniatiurnykh upravliaemykh vnugritrubnykh robotov [Methods of the Motion for the Miniature Inside-Tube Control Robots]. Nano- i mikrosistemnaia tekhnika [Nano and microsystem technique]. 2005, no. 9, pp. 37–45.
[2] Gambao E., Hernando M., Brunete A. Multiconfigurable Inspection Robots for Low Diameter Canalizations. 22nd International Symposium on Automation and Robotics in Construction ISARC 2005 - September 11-14, 2005, Ferrara (Italy), pp. 1–6.
[3] Vorotnikov S., Nikitin N., Ceccarelli M. A Robotic System for Inspection and Repair of Small Diameter Pipelines. Science and Education of the Bauman MSTU, 2015, no. 02, pp. 180–196.
[4] Sun L., Lu L., Qin X., Gong Z. Micro Robot for Detecting Wall Cracks of Pipe. Proceedings of the 6th International Conference CLAWAR 2003, Catania, Italy, 2003, pp. 643–650.
[5] Dovica M., Gorzas M. Mechatronics Aspects of In-Pipe Minimachine of Screw-Nut Principle Design. Recent Advances in Mechatronics, 2007, pp. 335–339.
[6] RD 153-34.0-20.522-99. Tipovaia instruktsiia po periodicheskomu tekhnicheskomu osvidetel’stvovaniiu truboprovodov teplovykh setei v protsesse ekspluatatsii [Standard instruction for the periodic technical inspection of pipelines of heat networks in operation]. 2000.
[7] Gavrilov A.I., Gladkov E.A., Perkovskii R.A. Videokomp’iuternye tekhnologii postroeniia kompaktnykh modelei protiazhennykh svarnykh shvov v sistemakh avtomatizirovannogo monitoringa kachestva pri stroitel’stve magistral’nykh truboprovodov [Video-computer technology to build compact models extended welds in automated quality monitoring systems in the construction of pipelines]. Svarka i Diagnostika [Welding and Diagnostics]. 2014, no. 1, pp. 57–61.
[8] Petrenko E.O., Arbuzov E.V. Komp’iuternoe modelirovanie elektromagnitnykh polei nakladnykh vikhretokovykh preobrazovatelei v svobod-nom prostranstve [Computer modeling of the electromagnetic fields overhead eddy current probes in the headspace]. 20 Vserossiiskaia NTK po nerazrushaiushchemu kontroliu i tekhnicheskoi diagnostike: tezisy dokladov [20 All-Russian Tax Code and technical diagnostics: Abstracts]. Moscow, 3–6 Mach 2014. Moscow, Spektr publ., 2014, pp. 74–77.
[9] Strebkov D.S., Korolev V.A., Trubnikov V.Z., Karachintsev A.V. Metod poiska povrezhdenii silovykh kabel’nykh linii [Method of location the power cable lines damages]. Mezhdunarodnyi nauchnyi zhurnal «Al’ternativnaia energetika i ekologiia» [International Scientific Journal for Alternative Energy and Ecology]. 2014, no. 8(148), pp. 79–83.
[10] Ottaviano E., Vorotnikov S., Ceccarelli M., Kurenev P. Design improvements and control of a hybrid walking robot. Robotics and Autonomous Systems, 2011, vol. 59, iss. 2, pp. 128–141.
[11] Ermishin K.V., Vorotnikov S.A. Mul’tiagentnaia sensornaia sistema servisnogo mobil’nogo robota [A multi-sensor system service mobile robot]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Instrument Engineering]. 2012, no. 6, pp. 50–59.
[12] Muscato G. Fuzzy Control of an Underactuated Robot with Fuzzy Microcontroller. Microprocessors and Microsystems, 1999, vol. 23, iss. 6, pp. 385–391.