Modelling of Nonlinear-Elastic Properties of Composites with Finite Deformations by Asymptotic Homogenization Method
Authors: Dimitrienko Yu.I. | Published: 20.11.2015 |
Published in issue: #11(668)/2015 | |
Category: Technology and Process Machines | |
Keywords: laminated composites, non-linear properties, finite deformations, Piola–Kirchhoff stress tensor, deformation gradient, universal representation of constitutive relations, asymptotic homogenization method, local problems, method of nested optimization, stress-strain diagrams |
A method for calculating non-linear properties of composites with finite deformations is developed. The method is based on asymptotic homogenization of periodical structures. Universal representations of nonlinear-elastic constitutive relations for materials with finite deformations, earlier proposed by the author, are used in the calculations. Analytical solutions to specific problems for layered composite materials with finite deformations are obtained. A method of nested optimization is proposed for numerical realization of these solutions. Examples of numerical calculations for stress-strain diagrams for layered composite materials with finite deformations are presented.
References
[1] Yang Q., Xu F. Numerical Modeling of Nonlinear Deformation of Polymer Composites Based on Hyperelastic Constitutive Law. Frontiers of Mechanical Engineering in China, 2009, vol. 4, is. 3, pp. 284–288.
[2] Aboudi J. Finite Strain Micromechanical Modeling of Multiphase Composites. International Journal for Multiscale Computational Engineering, 2008, vol. 6, is. 5, pp. 411–434.
[3] Zhang B., Yu X., Gu B. Micromechanical Modeling of Large Deformation in Sepiolite Reinforced Rubber Sealing Composites under Transverse Tension. Polymer Composites, 2015, doi: 10.1002/pc.23596.
[4] Ge Q., Luo X., Iversen C.B., Nejad H.B., Mather P.T., Dunn M.L., Jerry Qi H. A Finite Deformation Thermomechanical Constitutive Model for Triple Shape Polymeric Composites Based on Dual Thermal Transitions. International Journal of Solids and Structures, 2014, vol. 51, pp. 2777–2790.
[5] Christensen R.M. Mechanics of composite materials. New York, John Wiley&Sons, 1979. 324 p.
[6] Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov [Averaging processes in pe riodic media. Mathematical problems in the mechanics of composite materials]. Moscow, Nauka publ., 1984. 356 p.
[7] Pobedria B.E. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. Moscow, MSU publ., 1984. 324 p.
[8] Dimitrienko Iu.I., Sokolov A.P. Mnogomasshtabnoe modelirovanie uprugikh kompozitsionnykh materialov [Multiscale modeling of elastic composite materials]. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations]. 2012, vol. 24, no. 5, pp. 3–20.
[9] Dimitrienko Y.I., Sokolov A.P. Numerical modeling of composites with multiscale microstructure. Bulletin of the Russian Academy of Sciences: Physics, 2011, vol. 75, no. 11, pp. 1457–1461.
[10] Dimitrienko Iu.I., Sborshchikov S.V., Sokolov A.P. Chislennoe modelirovanie mikrorazrusheniia i prochnostnykh kharakteristik prostranstvenno-armirovannykh kompozitov [Computational modeling of microdestruction and strength of multidimensional reinforced composites]. Mekhanika kompozitsionnykh materialov i konstruktsii [Journal on Composite Mechanics and Design]. 2013, vol. 19, no. 3, pp. 365–383.
[11] Dimitrienko Iu.I., Sborshchikov S.V., Sokolov A.P., Sadovnichii D.N., Gafarov B.R. Chislennnoe i eksperimental’noe modelirovanie prochnostnykh kharakteristik sferoplastikov [Computer and experimental study modeling of failure of micro-sphere filled composite]. Kompozity i nanostruktury [Journal Composites and Nanostructures]. 2013, no. 3, pp. 35–51.
[12] Dimitrienko Iu.I., Gubareva E.A., Sborshchikov S.V. Asimptoticheskaia teoriia konstruktivno-ortotropnykh plastin s dvukhperiodicheskoi strukturoi [Asymptotic theory of constructive-orthotropic plates with two-periodic structures]. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and computational methods]. 2014, no. 1, pp. 36–57.
[13] Dimitrienko Iu.I., Iakovlev D.O. Asimptoticheskaia teoriia termouprugosti mnogosloinykh kompozitnykh plastin [Asymptotic Theory of Thermoelasticity of Multilayer Composite Plates]. Mekhanika kompozitsionnykh materialov i konstruktsii [Journal on Composite Mechanics and Design]. 2014, vol. 20, no. 2, pp. 260–282.
[14] Dimitrienko Iu.I., Iakovlev N.O., Erasov V.S., Fedoniuk N.N., Sborshchikov S.V., Gubareva E.A., Krylov V.D., Grigor’ev M.M., Prozorovskii A.A. Razrabotka mnogosloinogo polimernogo kompozitsionnogo materiala s diskretnym konstruktivno-ortotropnym zapolnitelem [Development of a multilayer polymer composite material with discrete structural-orthotropic fillers]. Kompozity i nanostruktury [Journal Composites and Nanostructures]. 2014, vol. 6, no. 1, pp. 32–48.
[15] Dimitrienko Iu.I., Fedoniuk N.N., Gubareva E.A., Sborshchikov S.V., Prozorovskii A.A. Mnogomasshtabnoe konechno-elementnoe modelirovanie trekhsloinykh sotovykh kompozitnykh konstruktsii [Multiscale Finite-Element Modeling of Sandwich Honeycomb Composite Structures]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 7, pp. 243–265. Available at: http://technomag.bmstu.ru/en/doc/717805.html. Doi: 10.7463/0714.0717805.
[16] Dimitrienko Iu.I., Dashtiev I.Z. Modeli viazkouprugogo povedeniia elastomerov pri konechnykh deformatsiiakh [Models of Viscoelastic Behaviour of Elastomers with Finite Strains]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2001, no. 1, pp. 21–41.
[17] Dimitrienko Yu.I. Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, 2010. 722 p.
[18] Dimitrienko Iu.I. Universal’nye zakony mekhaniki i elektrodinamiki sploshnoi sredy. Mekhanika sploshnoi sredy [Universal laws of mechanics and electrodynamics of continuous media. Continuum Mechanics]. Vol. 2. Moscow, Bauman Press, 2011. 560 p.
[19] Dimitrienko Iu.I. Osnovy mekhaniki tverdogo tela. Mekhanika sploshnoi sredy [Fundamentals of solid mechanics. Continuum Mechanics]. Vol. 4. Moscow, Bauman Press, 2013. 624 p.