Increasing the Efficiency of Hydroabrasive Cutting through the Choice of Rational Cutting Modes by Acoustic Emission Method
Authors: Barzov A.A., Galinovsky A.L., Khafizov M.V., Kolpakov V.I. | Published: 20.01.2016 |
Published in issue: #1(670)/2016 | |
Category: Technology and Process Machines | |
Keywords: hydroabrasive cutting, acoustic emission, technological parameters, abrasive consumption, technology efficiency |
The authors examine the problem of expedited evaluation of the waterjet cutting performance at the technological preparation stage by the acoustic emission method. The results of numerical calculations of the hydroabrasive cutting process in two- and three-dimensional formulations are presented; and the results are compared. The experimental results of hydroabrasive cutting of different materials with a varying concentration of the abrasive material are given. The existence of the optimal efficiency mode of hydroabrasive cutting is shown. The experimental data is compared with the simulation results. The results obtained show a correlation between the waterjet cutting efficiency and the acoustic signal power.
References
[1] Stepanov Iu.S., Barsukov G.V. Sovremennye tekhnologicheskie protsessy mekhanicheskogo i gidrostruinogo raskroia tekhnicheskikh tkanei [Modern technological processes of mechanical cutting and jetting technical fabrics]. Moscow, Mashinostroenie publ., 2004. 239 p.
[2] Stepanov Iu.S., Burnashov M.A., Golovin K.A. Progressivnye tekhnologii gidrostruinogo rezaniia materialov [Advanced technologies jetting cutting materials]. Tula, TulGU publ., 2009. 318 p.
[3] Burnashov M.A., Prezhbilov A.N. Energeticheskii analiz protsessa nagreva ledianoi chastitsy pri vodoledianoi ochistke detalei mashin [The power analysis of process of heating of the ice particle at water ice cleaning of details]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii [Fundamental and Applied Problems of Engineering and Technology]. 2014, no. 6(308), pp. 96–98.
[4] Shmanev V.A., Shulepov A.P., Meshcheriakov A.V. Struinaia gidroabrazivnaia obrabotka detalei GTD [Jet Waterjet machining GTE parts]. Moscow, Mashinostroenie publ., 1995. 350 p.
[5] Gurevskii A.V. Ekspress-opredelenie ratsional’nykh dinamicheskikh uslovii i rezhimov ul’trazvukovoi abrazivnoi obrabotki metodom akusticheskoi emissii. Diss. kand. tekhn. nauk [Rapid determination of rational dynamic conditions and modes of ultrasonic abrasion by acoustic emission. Cand. tehn. sci. diss.]. Moscow, 2005. 17 p.
[6] Hloch S., Perzel V., Hreha P., Tozan H., Valicek J. Vibration as a source of information for abrasive waterjet monitoring. Journal of Naval Science and Engineering, 2011, vol. 7 (1), pp. 71–85.
[7] Kek T., Grum J. Assessment of laser cutting quality using acoustic emission signals. Application of Contemporary Non-Destructive Testing in Engineering: The 10th International Conference of the Slovenian Society for Non-Destructive Testing. Ljubljana, Slovenia, 2009, pp. 325–332.
[8] Gómez M.P., Hey A.M., D’Attelis C.E., Ruzzante J.E. Assessment of Cutting Tool Condition by Acoustic Emission. Procedia Materials Science, 2002, vol. 1, pp. 321–328.
[9] Hloch S., Valíček J., Kozak D., Tozan H., Chattopadhyaya S., Adamčík P. Analysis of acoustic emission emerging during hydro abrasive cutting and options for indirect quality control. The International Journal of Advanced Manufacturing Technology, 2013, vol. 66, pp. 45–58.
[10] Erukhimovich Iu.E. Matematicheskoe modelirovanie i sovershenstvovanie metoda rascheta effektivnosti protsessa rezaniia gornykh porod gidroabrazivnym instrumentom. Diss. kand. tekh. nauk [Mathematical modeling and improving the efficiency of the method of calculation of cutting rocks hydroabrasive tool. Cand. tech. sci. diss.]. Tula, 1999. 17 p.
[11] Mabrouki T., Raissi K., Cornier A. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process. Wear, 2000, vol. 239, pp. 260–273.
[12] Mabrouki T., Raissi K. Stripping process modelling: interaction between a moving waterjet and coated target. International Journal of Machine Tools and Manufacture, 2002, vol. 42, pp. 1247–1258.
[13] Barzov A.A. Emissionnaia tekhnologicheskaia diagnostika [Issuing Process Diagnostics]. Moscow, Mashinostroenie publ., 2005. 384 p.
[14] Greshnikov V. A., Drobot Iu.B. Akusticheskaia emissiia. Primenenie dlia ispytanii materialov i izdelii [Acoustic emission. Application of the test materials and products]. Moscow, Standartov publ., 1986. 271 p.
[15] Khvostikov A.S. Diagnostika iznosa rezhushchego instrumenta na osnove veivlet-analiza signala vibroakusticheskoi emissii. Diss. kand. tekh. nauk [Diagnostic tool wear based on wavelet analysis of vibro-acoustic emission signal. Cand. tech. sci. diss.]. Komsomol’sk-na-Amure, 2007. 20 p.
[16] Cherniaeva E.V. Otsenka sostoianiia termoobrabotannykh stalei po signalam akusticheskoi emissii. Diss. kand. tekh. nauk [Evaluation of heat-treated steels on signals of acoustic emission. Cand. tech. sci. diss.]. Sankt-Peterburg, 2007. 17 p.