Creating Rational Conditions for Turning Surfaces of Dissimilar Structural Materials by Brittle Superhard Cutters
Authors: Kudryashov E.A., Smirnov I.M. | Published: 21.02.2018 |
Published in issue: #2(695)/2018 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: intermittent surface, damping cutter, composite cutting material, rational contact conditions, combination of dissimilar materials, tool durability |
The authors examine the technological problems that arise during machining by turning complex surfaces composed of materials that are dissimilar in their physico-mechanical characteristics. At the same time, composites are considered attractive for high-speed machining due to the chemical inertness to ferrous metals, the absence of surface tempering and possible charging that are typical of the grinding processes used for the same purpose. In this paper, rational conditions for the tools are created for turning surfaces composed of dissimilar structural materials. A method is developed for setting up a brittle cutter to be used for smooth cutting of a discontinuous surface of a workpiece. In this method, penetration and turning are carried out by the peripheral part of the face of the tool at the maximum possible distance from the tip and the cutting edges. The face of the cutting element is given a cycloidal profile, which makes it possible to eliminate the impact load on the tip of the tool and reduce the friction forces of the chips against the face surface. The authors have developed a tool design that damps intermittent cutting loads and provides increased durability of a composite cutter that is most effective for turning surfaces of dissimilar structural materials. The following results are achieved: machining accuracy of no lower than the 7th grade; and roughness of no more than 1.25 μm.
References
[1] Kudriashov E.A., Smirnov I.M. Klassifikatsiia konstruktivno slozhnykh poverkhnostei detalei kak podgotovitel’nyi etap proektirovaniia tekhnologii mekhanicheskoi obrabotki [Classification of structural complex parts surfaces as preparatorystage design technology machining]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii [Fundamental and applied problems of technics and technology]. 2015, no. 2(310), pp. 89–94.
[2] Kudriashov E.A. Vybor bazovoi detali dlia eksperimental’nogo issledovaniia metoda obrabotki konstruktivno slozhnykh vintovykh poverkhnostei detalei klassa «valy» [The choice of the basic details for the experimental investigation of the processing method is structurally complex spiral surfaces of the components of the shafts]. Izvestiia IuZGU [Proceedings of the South-West State University]. 2014, no. 6(57), pp. 26–32.
[3] Carou D., Rubio E. M., Davim J.P. Discontinuous cutting: failure mechanisms, tool materials and temperature study – a review. Reviews on Advanced Materials Science, 2014, vol. 38, no. 2, pp. 110–124.
[4] Kudriashov E.A., Smirnov I.M., Iatsun E.I. Vybor instrumental’nogo obespecheniia protsessov chistovoi obrabotki konstruktivno slozhnykh poverkhnostei [Selection of tooling backup of finishing processes of highly engineered surfaces of parts]. Naukoemkie tekhnologii v mashinostroenii [Science Intensive Technologies in Mechanical Engineering]. 2014, no. 12(42), pp. 10–14.
[5] Smirnov I.M. Instrumental’noe obespechenie protsessov mekhanicheskoi obrabotki konstruktivno slozhnykh detalei mashin [Tool maintenance processes of mechanical processing of structurally complex components of machinery]. Moscow, Triumf publ., 2014. 128 p.
[6] Stahl J.E. Metal cutting – Theories and models. Lund, Lund University, 2012. 580 p.
[7] De Vos P. Applied metal cutting physics – Best practice. Fagersta, SECO Tools AB, 2016. 163 p.
[8] Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. New York, Cambrdige University Press, 2012. 366 p.
[9] Kudriashov E.A., Smirnov I.M. Poisk optimal’nykh reshenii pri proektirovanii protsessov mekhanicheskoi obrabotki [Search of ultimate solutions in the design оf machining processes]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies]. 2014, no. 3(23), pp. 94–98.
[10] Kudriashov E.A., Smirnov I.M. Primenenie metoda upravleniia rezhushchei chast’iu instrumenta dlia povysheniia effektivnosti protsessa preryvistogo rezaniia [Application of a method of management by cutting part of the tool for increase of efficiency of process of faltering cutting]. Izvestiia IuZGU. Seriia. Tekhnika i tekhnologii [Proceedings of the South-West State University. Technics and Technologies]. 2013, no. 4, pp. 23–28.
[11] Novikov S.G., Malykhin V.V., Iatsun E.I., Kudriashov E.A., Pavlov E.V., Fadeev A.A., Domarev N.V. Universal’nyi dempfiruiushchii rezets [Universal damping cutter]. Patent RF no. 2457078, 2012, 8 p.
[12] Novikov S.G., Malykhin V.V., Kudriashov E.A., Iatsun E.I., Domarev N.V. Dempfiruiushchii rezets s reguliruemoi zhestkost’iu [Damping cutter with controlled rigidity]. Patent RF no. 2479385, 2013, 9 p.
[13] Novikov S.G., Malykhin V.V., Kudriashov E.A., Iatsun E.I., Pavlov E.V. Povyshenie ustoichivosti protsessa tocheniia dempfiruiushchim reztsom [Improving the stability of turning cutters damping]. Izvestiia Iugo-Zapadnogo gosudarstvennogo universiteta. Ser. Tekhnika i tekhnologii [Proceedings of the Southwest State University. Technics and Technologies]. 2011, no. 3(36), pp. 122–125.
[14] Kudriashov E.A., Smirnov I.M. Primenenie metoda upravleniia rezhushchei chast’iu instrumenta dlia povysheniia effektivnosti protsessa preryvistogo rezaniia [Application of a method of management by cutting part of the tool for increase of efficiency of process of faltering cutting]. Izvestiia Iugo-Zapadnogo gosudarstvennogo universiteta. Ser. Tekhnika i tekhnologii [Proceedings of the Southwest State University. Technics and Technologies]. 2013, № 4, c. 23–28.
[15] Kudriashov E.A., Iatsun E.I., Pavlov E.V., Remnev A.I. Metodologiia formirovaniia rezhushchei chasti energosberegaiushchikh kombinirovannykh instrumentov [The methodology of forming the cutting part of the combined energy-saving tools]. Trudy 18 Mezhd. nauch.-tekhn. konf. «Mashinostroenie i tekhnosfera 21 veka» [Proceedings of the 18 Int. scientific.-tech. Conf. «Machine building and techno sphere of the 21 century»]. 12–17 September 2011, Donetsk, DonNTU publ., 2011, vol. 3, pp. 231–234.
[16] Kudriashov E.A. Tekhnologicheskie preimushchestva instrumental’nogo materiala kompozit pri obrabotke konstruktivno slozhnykh poverkhnostei [The technological advantages of the tool material composite when processing structurally complex surfaces]. Izvestiia VolgGTU [Izvestiya VolgSTU]. 2010, no. 12, pp. 15–20.
[17] Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. Journal of materials processing technology, 2009, vol. 209, no. 7, pp. 3478–3489.
[18] Smirnov I.M. Povyshenie effektivnosti protsessov mekhanicheskoi obrabotki konstruktivno slozhnykh detalei mashin [Improving the efficiency of processes of mechanical processing of structurally complex components of machinery]. Moscow, Triumf publ., 2012. 224 p.
[19] Kudriashov E.A., Emel’ianov S.G., Iatsun E.I. Tekhnologicheskoe osnashchenie protsessov izgotovleniia konstruktivno slozhnykh detalei [Technological equipping processes of manufacturing structurally complex parts]. Staryi Oskol, TNT publ., 2013. 268 p.