Inverse kinematics of a 6-DOF hybrid robot including two parallel modules
Authors: Mukhin К.S., Antonov A.V., Fomin A.S. | Published: 13.08.2025 |
Published in issue: #8(785)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: hybrid design robot, inverse kinematics problem, 4-DOF delta mechanism, circular guide mechanism, trajectory simulation |
The paper considers a new relative manipulation hybrid 6-DOF robot. It consists of two modules of the parallel design positioned one above the other. The robot upper module is a 4-DOF delta mechanism, and the lower one is the 2-DOF mechanism with a circular guide. The proposed design provides the robot with the improved kinematic characteristics, which could not be achieved with a separate use of the upper or lower modules. The paper proposes the developed algorithm for solving the inverse kinematics problem making it possible to compute displacements in the drive links for a given relative module configuration. The algorithm includes two steps: determining the module configuration relative to the fixed coordinate system and solving the inverse kinematics problem for each module separately. The proposed algorithm performance is demonstrated using the example of simulating the trajectory of the upper robot module relative to the lower one.
EDN: JGQBVO, https://elibrary/jgqbvo
References
[1] Glazunov V.A., Lastochkin A.B., Shalyukhin K.A. et al. Analysis and classification of relative manipulation devices. Problemy mashinostroeniya i nadezhnosti mashin, 2009, no. 4, pp. 81–85. (In Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2009, vol. 38, no. 4, pp. 379–382, doi: https://doi.org/10.3103/S1052618809040141)
[2] Wu Y., Wang H., Li Z. Quotient kinematics machines: concept, analysis, and synthesis. J. Mech. Robot., 2011, vol. 3, no. 4, art. 041004, doi: https://doi.org/10.1115/1.4004891
[3] Khoi P.B., Toan N.V. A control solution for closed-form mechanisms of relative manipulation based on fuzzy approach. Int. J. Adv. Robot. Syst., 2019, vol. 16, no. 2, doi: https://doi.org/10.1177/1729881419839810
[4] López-Estrada L., Fajardo-Pruna M., Sánchez-González L. et al. Design and implementation of a stereo vision system on an innovative 6DOF single-edge machining device for tool tip localization and path correction. Sensors, 2018, vol. 18, no. 9, art. 3132, doi: https://doi.org/10.3390/s18093132
[5] Bi W., Xie F., Liu X.-J. et al. Optimal design of a novel 4-degree-of-freedom parallel mechanism with flexible orientation capability. Proc. Inst. Mech. Eng. B, 2019, vol. 233, no. 2, pp. 632–642, doi: https://doi.org/10.1177/0954405417731469
[6] Li Q., Wu W., Xiang J. et al. A hybrid robot for friction stir welding. Proc. Inst. Mech. Eng. C, 2015, vol. 229, no. 14, pp. 2639–2650, doi: https://doi.org/10.1177/0954406214562848
[7] Isa M.A., Lazoglu I. Five-axis additive manufacturing of freeform models through buildup of transition layers. J. Manuf. Syst., 2019, vol. 50, pp. 69–80, doi: https://doi.org/10.1016/j.jmsy.2018.12.002
[8] Carbonari L., Callegari M., Palmieri G. et al. A new class of reconfigurable parallel kinematic machines. Mech. Mach. Theory, 2014, vol. 79, pp. 173–183, doi: https://doi.org/10.1016/j.mechmachtheory.2014.04.011
[9] Schreiber L.-T., Gosselin C. Schönflies motion parallel robot (SPARA): a kinematically redundant parallel robot with unlimited rotation capabilities. IEEE/ASME Trans. Mechatron., 2019, vol. 24, no. 5, pp. 2273–2281, doi: https://doi.org/10.1109/TMECH.2019.2929646
[10] Carricato M. Fully isotropic four-degrees-of-freedom parallel mechanisms for Schoenflies motion. Int. J. Robot. Res., 2005, vol. 24, no. 5, pp. 397–414, doi: https://doi.org/10.1177/0278364905053688
[11] Laryushkin P., Fomin A., Antonov A. Kinematic and singularity analysis of a 4-DOF Delta-type parallel robot. J. Braz. Soc. Mech. Sci. Eng., 2023, vol. 45, no. 4, art. 218, doi: https://doi.org/10.1007/s40430-023-04128-7
[12] He S., Duan X., Qu X. et al. Kinematic modeling and motion control of a parallel robotic antenna pedestal. Robotica, 2023, vol. 41, no. 11, pp. 3275–3295, doi: https://doi.org/10.1017/S0263574723000917
[13] Laryushkin P., Antonov A., Fomin A. et al. Inverse and forward kinematics of a reconfigurable spherical parallel mechanism with a circular rail. In: ROMANSY 24 — robot design, dynamics and control. Springer, 2022, pp. 246–254, doi: https://doi.org/10.1007/978-3-031-06409-8_26
[14] Waldron K., Schmiedeler J. Kinematics. In: Springer handbook of robotics. Springer, 2016, pp. 11–36, doi: https://doi.org/10.1007/978-3-319-32552-1_2
[15] Müller A., Zlatanov D., eds. Singular configurations of mechanisms and manipulators. Springer, 2019. 229 p., doi: https://doi.org/10.1007/978-3-030-05219-5