Coordination of Movements of Two-Handed 12-DOF Robot Manipulators at Their Joint Manipulation
Authors: Karginov L.A., Vorobyov E.I., Kovalchuk A.K. | Published: 22.11.2021 |
Published in issue: #12(741)/2021 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: two-handed robot, inverse problem, tree-like kinematic scheme, generalized coordinates, joint functioning, hand modeling |
The study focuses on a two-handed robot with twelve degrees of freedom, six for each arm, and gives an example of calculating generalized coordinates for the two-armed robot limbs at their joint manipulation. The initial data for obtaining generalized coordinates are represented by the location of the work object, which is a cube. When solving the problem, the last arm links reach the faces of the work object with a given orientation. To obtain generalized coordinates, we used a hierarchical approach, which is based on an algorithm for solving the inverse problem of kinematics, and developed a control flow chart. The values ??of generalized robot coordinates were obtained for each location of the object of work, taking into account the kinematic constraints in the joints of the robot actuator. Findings of research show that it is possible to obtain generalized coordinates for the coordinated movement of the robot actuators with tree-like kinematic scheme.
References
[1] Vorob’yev E.I. A technique for configuring the relative program movements of robotic systems with two arms. Problemy mashinostroeniya i nadezhnosti mashin, 2020, no. 4, pp. 3–10, doi: https://doi.org/10.31857/S023571192004015X (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2020, vol. 49, no. 4, pp. 273–279, doi: https://doi.org/10.3103/S1052618820040159)
[2] Vorob’yev E.I., Mikheev A.V., Morgunenko K.O. Construction of program motions of relative manipulation mechanisms with three degrees of freedom. Problemy mashinostroeniya i nadezhnosti mashin, 2019, no. 6, pp. 41–48, doi: https://doi.org/10.1134/S0235711919060105 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2019, vol. 48, no. 6, pp. 510–516, doi: https://doi.org/10.3103/S1052618819060104)
[3] Vorob’yev E.I. Realization of a given relative motion of two rigid bodies by a two-armed robot. Izvestiya RAN. MTT, 2018, no. 2, pp. 122–128. (In Russ.). (Eng. version: Mech. Solids., 2018, vol. 53, no. 2, pp. 221–227, doi: https://doi.org/10.3103/S0025654418020139
[4] Leskov A.G., Kalevatykh I.A. Experimental studies of algorithms for control of coordinated motion of two-manipulator cooperative system. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2012, no. 4, pp. 33–43. (In Russ.).
[5] Leskov A.G., Illarionov V.V., Kalevatykh I.A., et al. Planning, simulation and experimental research into typical robotic manipulator operation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2016, no. 4, pp. 57–70, doi: http://dx.doi.org/10.18698/0236-3941-2016-4-57-70 (in Russ.).
[6] Bogdanova Yu.V., Gus’kov A.M. Numerical simulation of surgical robotic manipulator in point-to-point motion. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2013, no. 6, URL: http://engineering-science.ru/doc/574314.html (in Russ.).
[7] Leskov A.G., Seliverstova E.V. Algorithm for planning and selection of deformable object grasp by multi-finger gripper of robotic manipulator. Ekstremal’naya robototekhnika, 2017, vol. 18, no. 11, pp. 739–744, doi: https://doi.org/10.17587/mau.18.739-744 (in Russ.).
[8] Leskov A.G., Illarionov V.V., Kalevatykh I.A., et al. Hardware-software complex for solving the task of automatic capture of the object with manipulatorssss. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2015, no. 1, doi: http://dx.doi.org/10.18698/2308-6033-2015-1-1361 (in Russ.).
[9] Bazhinova K.V., Leskov A.G., Seliverstova E.V. Automatic grasping of objects by a manipulator equipped with a multifinger hand. Izvestiya RAN. Teoriya i sistemy upravleniya, 2019, no. 2, pp. 166–176, doi: https://doi.org/10.1134/S0002338819020033 (in Russ.). (Eng. version: J. Comput. Syst. Sci. Int., 2019, vol. 58, vol. 2, pp. 317–327, doi: https://doi.org/10.1134/S1064230719020035)
[10] Leskov A.G., Bazhinova K.V., Moroshkin S.D., et al. Modeling of robotic arms kinematics by means of block matrixes. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 9, doi: http://dx.doi.org/10.18698/2308-6033-2013-9-954 (in Russ.).
[11] Fu K.S., Gonzalez R., Lee C.S.G. Robotics. Control sensing, vision, and intelligence. McGraw-Hill, 1987. (Russ. ed.: Robototekhnika. Moscow, Mir Publ., 1989. 624 p.)
[12] Zenkevich S.L., Yushchenko A.S. Osnovy upravleniya manipulyatsionnymi robotami [Fundamentals of control on manipulation robots]. Moscow, Bauman MSTU Publ., 2004. 480 p. (In Russ.).
[13] Karginov L.A. Hierarchical approach to solving an inverse problem of kinematics. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2016, no. 3, URL: http://engineering-science.ru/doc/835545.html (in Russ.).
[14] Karginov L.A. Example of control actions for a six-leg walking robot on a rough surface. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya, 2015, no. 3, pp. 70–88. (In Russ.).
[15] Koval’chuk A.K. Modified Denavit-Hartenberg coordinate system for robot actuating mechanisms with tree-like kinematic structure. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 11, URL: http://engineering-science.ru/doc/826673.html (in Russ.).