Dynamic balance generalized problem and the promising areas of its application
Authors: Gorobtsov A.S. | Published: 23.02.2023 |
Published in issue: #3(756)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: machine dynamics, dynamic balance, zoomorphic robots, optimal control, nonlinear systems |
The paper considers the generalized problem of the machines and mechanisms dynamic balance in terms of ensuring the given laws of altering reactions in the selected links. Representation of equations of the mechanical systems dynamics in the form of differential algebraic equations was used making it possible to obtain mathematical models of the nonlinear mechanical systems dynamics with the arbitrary structure of kinematic and force connections. With this approach, the constraint reactions are determined by algebraic equations from the system coordinates. The problem solution is based on changing the bonds selected reactions due to the impact on reactions in the other selected bonds by adding non-stationary terms to the selected bonds equation. Conditions for rigorous solution of the optimal control problem for a mechanical system are shown for the integral quality criterion not explicitly containing the control functions. The method is aimed at numerical models of the mechanical systems widely used in the programs for dynamic analysis of the coupled systems of bodies. Test examples are provided for manipulator, anthropomorphic robot and controlled suspension of a transport vehicle. The method was realized in the software package for simulating the controlled motion dynamics of the coupled systems of bodies.
References
[1] Frolov K.V., ed. Vibratsii v tekhnike. T. 6 [Vibrations in technics. Vol. 6]. Moscow, Mashinostroenie Publ., 1981. 456 p. (In Russ.).
[2] Dimentberg F.M. Teoriya prostranstvennykh sharnirnykh mekhanizmov [Theory of spatial swivel mechanisms]. Moscow, Nauka Publ., 1982. 335 p. (In Russ.).
[3] Cipra R.J., Uicker J.J. On the dynamic simulation of large nonlinear mechanical systems. Part 1: An overview of the simulation technique. substructuring and frequency domain considerations. J. Mech. Des., 1981, vol. 103, no. 4, pp. 849–865, doi: https://doi.org/10.1115/1.3254997
[4] Bayo E., Serna M.A. Penalty formulations for the dynamic analysis of elastic mechanisms. J. Mech., Trans., and Automation., 1989, vol. 111, no. 3, pp. 321–327, doi: https://doi.org/10.1115/1.3259002
[5] Gorobtsov A.S., Kartsov S.K., Pletnev A.E. et al. Kompyuternye metody postroeniya i issledovaniya matematicheskikh modeley dinamiki konstruktsiy avtomobiley [Computer methods for developing and studying mathematical models of vehicle dynamics]. Moscow, Mashinostroenie Publ., 2011. 462 p. (In Russ.).
[6] Efimov G.B., Pogorelov D.Yu. Universal mechanism — a software package for modeling the dynamics of systems of many solids. Preprinty IPM im. M.V. Keldysha [KIAM Preprint], 1993, no. 77. (In Russ.).
[7] ADAMS/vehicle user’s guide. Version 8.0. Mechanical Dynamics, 1991. 160 p.
[8] Wittenburg J. Dynamics of systems of rigid bodies. Vieweg+Teubner, 1977. 224 p. (Russ. ed.: Dinamika sistem tverdykh tel. Moscow, Mir Publ., 1980. 292 p.)
[9] Gorobtsov A.S., Skorikov A.V., Tarasov P.S. [Method for synthesis of programmed robot motion with respect to the given constraints of reactions in the links]. Mat. XIII Vseross. nauch.-tekh. konf. s mezhd. uchastiem [Proc. XIII Russ. Sci.-Tech. Conf. with Int. Participation]. Zheleznogorsk, 2021, pp. 199–203. (In Russ.).
[10] Mamedov S., Khusainov R., Gusev S. et al. Underactuated mechanical systems: whether orbital stabilization is an adequate assignment for a controller design? IFAC-Pap., 2020, vol. 53, no. 2, pp. 9262–9269, doi: https://doi.org/10.1016/j.ifacol.2020.12.2378
[11] Vukobratovic M., Stokić D., Kirćanski N. Non-adaptive and adaptive control of manipulation robots. Springer, 1985. 383 p. (Russ. ed.: Neadaptivnoe i adaptivnoe upravlenie manipulyatsionnymi rabotami. Moscow, Mir Publ., 1989. 376 p.)
[12] Roberts R.G., Maciejewski A.A. Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Autom. Control, 1993, vol. 38, no. 5, pp. 689–699, doi: https://doi.org/10.1109/9.277234
[13] Pchelkin S., Shiriaev A., Robertsson A. et al. On orbital stabilization for industrial manipulators: case study in evaluating performances of modified PD+ and inverse dynamics controllers. IEEE Trans. Control Syst. Technol., 2017, vol. 25, no. 1, pp. 101–117, doi: https://doi.org/10.1109/TCST.2016.2554520
[14] Ledzema R., Bayo A. A Lagrangian approach to the non-causal inverse dynamics of flexible multibody systems: the three-dimensional case. Int. J. Numer. Methods Eng., 1994, vol. 37, no. 19, pp. 3343–3361, doi: https://doi.org/10.1002/nme.1620371909
[15] Glazunov V.A. Mekhanizmy parallelnoy struktury i ikh primenenie [Parallel mechanisms and their application]. Izhevsk, IKI Publ., 2018. 1035 p. (In Russ.).
[16] Ganiev R.F., Glazunov V.A. Parallel structure manipulation mechanisms and their applications in modern technology. DAN, 2014, vol. 459, no. 4, pp. 428–431, doi: https://doi.org/10.7868/S086956521434009X (in Russ.).
[17] Glazunov V.A., ed. Mekhanizmy perspektivnykh robototekhnicheskikh system [Mechanisms of prospective robotic systems]. Moscow, Tekhnosfera Publ., 2020. 296 p. (In Russ.).
[18] Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V. et al. Matematicheskaya teoriya optimalnykh protsessov [Mechanic theory of optimum processes]. Moscow, Nauka Publ., 1983. 392 p. (In Russ.).
[19] Bellman R. Dynamic programming. Princeton University Press, 1957. 342 p. (Russ. ed.: Dinamicheskoe programmirovanie [Dynamic programming]. Moscow, IL, 1960. 400 p.)
[20] Kolesnikov A.A., Kuzmenko A.A. The ADAR method and theory of optimal control in the problems of synthesis of nonlinear control systems. Mekhatronika, avtomatizatsiya, upravlenie, 2016, vol. 17, no. 10, pp. 657–669, doi: https://doi.org/10.17587/mau.17.657-669 (in Russ.).
[21] Frolov K.V. Reducing the amplitude of oscillations of resonant systems by controlled parameter changes. Mashinovedenie, 1965, no. 3, pp. 38–42. (In Russ.).
[22] Karnopp D., Rosenberg C. Analysis and simulation of multiport systems. London, MIT Press, 1968. 222 p.
[23] Dmitriev A.A., Chobitok V.A., Telminov A.V. Teoriya i raschet nelineynykh sistem podressorivaniya gusenichnykh mashin [Theory and calculation of nonlinear systems of tracked vehicle sprung systems]. Moscow, Mashinostroenie Publ., 1976. 206 p. (In Russ.).
[24] Gorobtsov A.S. [Study of the vibration protection system with stepwise changing parameters]. Vliyanie vibratsii na organizm cheloveka i problemy vibrozashchity. Tez. dok. IV Vsesoyuz. simp. [Effect of Vibration on a Human Body and Problems of Vibroprotection. Abs. IV Russ. Symp.]. Moscow, In-t mashinovedeniya im. A.A. Blagonravova, 1982, pp. 74–75. (In Russ.).
[25] Sutton R.S., Barto A.G. Reinforcement learning. MIT Press, 2018. 552 p.