To the Question of Temperature Effect on the Resistivity Uniformity of Silicon Carbide Substrates
Authors: Viyuginov V.N., Gudkov A.G., Shashurin V.D. | Published: 09.06.2016 |
Published in issue: #6(675)/2016 | |
Category: Technology and Process Machines | |
Keywords: silicon carbide, electrical properties, substrate, semiconductor, resistivity, thermal effects, single crystal |
SiC substrates of 6H-SiC polytype with a diameter of 76 mm are studied in this article. The substrates are made of a single crystal, grown with the addition of vanadium as a compensating impurity. Methods of measuring resistivity of semi-insulating substrates 6Н-SiC in the range of 105…1012 Omхcm are considered. Typical maps of resistivity distribution in these substrates before and after heat treatment are given. It is established that the uniformity of resistivity distribution across the substrate improves after annealing at 1 050 °С in inert environment, and this parameter remains stable in time. The results of the study have shown that the obtained semi-insulating material can be used as a substrate for manufacturing microwave transistors with a two-dimensional AlGaN/GaN channel.
References
[1] Ostroumov A.G., Rogachev A.A., O.V. Losev — pioner poluprovodnikovoi elektroniki [O.V. Losev — pioneer of semiconductor electronics]. Sb. Nauchnykh trudov. Fizika: problemy, istoriia, liudi [Collection of Scientific works. Physics: problems, history, people]. Leningrad, Nauka publ., 1986. 183 p.
[2] Novikov M.A. Losev O.V. — pioner poluprovodnikovoi elektroniki [O.V. Losev — pioneer of semiconductor electronics]. Fizika tverdogo tela [Physics of the Solid State]. 2004, vol. 46, pp. 5–9.
[3] Afanasyev A.V., Ivanov B.V., Ilyin V.A., Kardo-Sysoev A.F., Kuznetsova M.A., Luchinin V.V. Superfast drift step recovery diodes (DSRDs) and vacuum field emission diodes based on 4H-SiC. Materials Science Forum, 2013, vol. 740–742, pp. 1010–1013.
[4] Deboy G., Ludwig H., Mallwitz R., Rupp R. New SiC JFET with Integrated Body Diode Boosts Performance of Photovoltaic Systems. Proc. PCIM, May 2011, 2011, Curran Associates, Nuremburg, 2011, pp. 204–213.
[5] Baoxing Duan, Yintang Yang. New Al0.25Ga0.75N/GaN HEMT structure with the partial silicon doping. Micro & Nano Letters, 2012, vol. 7, iss. 1, pp. 9–11.
[6] Li L., Ryu Y., White H.W., Yu P. Characterization of ZnO UV photoconductors on the
[7] 6H-SiC substrate. Proceedings of SPIE — The International Society for Optical Engineering, 2010, vol. 7603. Available at: http://www.researchgate.net/publication/241455510 (accessed 28 February 2016).
[8] Abdelkrim M., Loulou M., Gharbi R., Fathallah R., Pirri C.F., Tresso E. Static and dynamic electrical study of a-SiC:H based p–i–n structure, effect of hydrogen dilution of the intrinsic layer. Solid-State Electronics, 2007, vol. 51, iss. 1, pp. 159–163.
[9] Mukherjee M., Majumder N., Roy S.K., Goswami K. GaN IMPATT Diode: a photo sensitive high power terahertz source. Semicond Sci Technol, 2007, vol. 22, pp. 1258–1267.
[10] Lebedev A.A., Chelnokov V.E. Shirokozonnye poluprovodniki dlia silovoi elektroniki [Wide bandgap semiconductors for power electronics]. Fizika i tekhnika poluprovodnikov [Physics and Technology of Semiconductor]. 1999, vol. 33, no. 9, pp. 1096–1099.
[11] Zhang W., Meyer B.K. Growth of GaN quasi-substrates by hydride vapor phase epitaxy. Physica status solidi (c), 2003, vol. 0, no. 6, pp. 1571–1582. doi: 10.1002/pssc.200303136.
[12] Ambacher O. Growth and applications of Group III-nitrides. Journal of Physics D: Applied Physics, 1998, vol. 31, iss. 20, pp. 2653–2710. doi: 10.1088/0022-3727/31/20/001.
[13] Popov V.V. Metodika izmereniia udel’nogo soprotivleniia podlozhek poluizoliruiushchego karbida kremniia [Resistivity Measuring Technique of the Semi-Insulating Sic Wafers]. Mashinostroitel’ [Mechanician]. 2014, no. 11, pp. 27–33.
[14] SemiMap Analytical Systems. Corema-WT. Available at: http://www.semimap.de/COREMA-WT.htm (accessed 28 February 2016).