Multi-Criteria Design Optimization of Delta Robot with Four Degrees of Freedom
Authors: Erastova K.G., Laryushkin P.A. | Published: 22.12.2021 |
Published in issue: #1(742)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: parallel mechanism, workspace, multi-criteria optimization, delta robot |
A delta robot with three degrees of freedom, having been well studied over the past 40 years, is one of the most popular parallel mechanisms. Nowadays, an urgent task is to study the properties of various modifications of this mechanism. The article considers a delta robot with four degrees of freedom, in which one of the kinematic chains with a parallelogram is divided into two, allowing the output link to have an additional rotational degree of freedom. To maximize the working area and minimize the cost of modification the optimization of the robot design was performed. The problem of maximizing a cubic workspace has been solved.
References
[1] Clavel R. Conception d’un Robot Parallele Rapide a 4 Degres de Liberte. Ecole Polytechnique Federale de Lausanne, 1991. 133 p.
[2] Clavel R. Device for the movement and positioning of an element in space. Patent US 4976582. Appl. 06.09.1989, publ.11.12.1990.
[3] Liu X.J., Wang J., Oh K.K., et al. A new approach to the design of a delta robot with a desired workspace. J. Intell. Robot Syst., 2004, vol. 39, no. 2, pp. 209–225, doi: https://doi.org/10.1023/B:JINT.0000015403.67717.68
[4] Mirz C., Uzsynski O., Angeles J., et al. Stiffness optimization of delta robots. In: ROMANSY 23. Springer, 2020, pp. 396–404.
[5] Miller K. Experimental verification of modeling of DELTA robot dynamics by direct application of Hamilton’s principle. Proc. 1995 IEEE Int. Conf. Robot. Autom., 1995, pp. 532–537, doi: https://doi.org/10.1109/ROBOT.1995.525338
[6] Merlet J.-P. Parallel robots. Springer, 2006. 402 p.
[7] Laryushkin P.A., Erastova K.G., Filippov G.S., et al. Calculation of delta-type mechanisms with linear actuators and different numbers of degrees of freedom. Problemy mashinostroeniya i nadezhnosti mashin, 2019, no. 3, pp. 19–29, doi: https://doi.org/10.1134/S0235711919030106 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2019, vol. 48, no. 3, pp. 204–210, doi: https://doi.org/10.3103/S1052618819030105)
[8] Laryushkin P.A., Erastova K.G., Kobylkevich K.A., et al. Investigation of special positions of the parallel mechanism of the delta family with four degrees of freedom. Problemy mashinostroeniya i nadezhnosti mashin, 2019, no. 6, pp. 34–41, doi: https://doi.org/10.1134/S0235711919060075 (in Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2019, vol. 48, no. 6, pp. 503–509, doi: https://doi.org/10.3103/S1052618819060074)
[9] Statnikov R.B., Statnikov A.R. The parameter space investigation method toolkit. Boston/London, Artech House, 2011. 240 p.
[10] Glazunov V.A., Dugin E.B., Kistanov V.A., et al. Parameters optimization of parallel mechanisms based on working space modeling. Problemy mashinostroeniya i nadezhnosti mashin, 2005, no. 6, pp. 12–16. (In Russ.).
[11] Glazunov V.A., Vu Ngok Bik, Nguen Ksuan Sang. Parameters optimization of parallel robots upon two criteria taking singularity into account. Sistemy upravleniya i informatsionnye tekhnologii, 2007, no. 1(27), pp. 81–85. (In Russ.).
[12] Thanh N.M., Glazunov V., Tuan T.C., et al. Multi-criteria optimization of the parallel mechanism with actuators located outside working space. 11th ICARCV2010, 2010, pp. 1772–1778.
[13] Custodio A.L., Madeira J.F.A., Vaz A.I.F., et al. Direct multisearch for multiobjective optimization. SIAM J. Optim., 2001, no. 21, vol. 3, pp. 1109–1140, doi: https://doi.org/10.1137/10079731X
[14] Gao Z., Zhang D., Ge Y. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robot. Comput. Integr. Manuf., 2010, vol. 26, no. 2, pp. 180–189, doi: https://doi.org/10.1016/j.rcim.2009.07.002
[15] Zangwill W.I. Nonlinear programming: a unified approach. Prentice-Hall, 1969. 356 p.
[16] Gol’dshteyn L.A. Optimizatsiya v srede MATLAB [Optimization in MATLAB]. Perm’, Izd-vo PNIPU Publ., 2015. 190 p. (In Russ.).
[17] Erastova K.G., Laryushkin P.A. Workspaces of parallel mechanisms and methods of determining their shape and size. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2017, no. 8, pp. 78–87, doi: https://doi.org/10.18698/0536-1044-2017-8-78-87 (in Russ.).
[18] Glazunov V.A., Koliskor A.Sh., Kraynev A.F. Prostranstvennye mekhanizmy parallel’noy struktury [Spatial parallel mechnisms]. Moscow, Nauka Publ., 1991. 95 p. (In Russ.).
[19] Zhang C., Sheng Q., Ordonez R. Notes on the convergence and applications of surrogate optimization. Conf. Publications, 2005, no. S, pp. 947–956, doi: http://dx.doi.org/10.3934/proc.2005.2005.947
[20] Werth B., Pitzer E., Affenzeller M. A fair performance comparison of different surrogate optimization strategies. In: EUROCAST 2017. Springer, 2018, pp. 408–415.