Design and development of motion generators for controlling the robotic systems with a constant tool insertion point
Authors: Shalyukhin K.A. | Published: 05.09.2023 |
Published in issue: #9(762)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: motion generator, robotic system, mechanism with constant insertion point, robot-assisted surgery, scroll potentiometer, medical endoscope |
The paper considers problems in design and development of motion generators for the robotics spatial mechanisms. Advantages and disadvantages of different arrangements of the motion generators from the point of view of controlling mechanisms with the constant tool insertion point are noted. The prospects for development of the control principles and designs of the motion generators in the robot-assisted surgery are highlighted.
References
[1] Glazunov V.A., ed. Novye mekhanizmy v sovremennoy robototekhnike [New mechanisms in modern robotics]. Moscow, Tekhnosfera Publ., 2018. 316 p. (In Russ.).
[2] Glazunov V.A., Kheylo S.V., eds. Mekhanizmy perspektivnykh robototekhnicheskikh system [Mechanisms of perspective robotic systems]. Moscow, Tekhnosfera Publ., 2020. 296 p. (In Russ.).
[3] Glazunov V.A., Kheylo S.V., eds. Novye mekhanizmy robototekhnicheskikh i izmeritelnykh system [New mechanisms of robotic and measuring systems]. Moscow, Tekhnosfera Publ., 2022. 244 p. (In Russ.).
[4] Martinez J.A.G., Cardinale F. Robotics in neurosurgery. Springer, 2022. 307 p.
[5] Diana M., Marescaux J. Robotic surgery. Br. J. Surg., 2015, vol. 102, no. 2, pp. e15-e28, doi: https://doi.org/10.1002/bjs.9711
[6] Zhang X., Lehman A., Nelson C.A. et al. Cooperative robotic assistant for laparoscopic surgery: CoBRASurge. Proc. IROS’09, 2009, pp. 5540–5545, doi: https://doi.org/10.1109/IROS.2009.5354446
[7] Kuo C.-H., Dai J.S., Dasgupta P. Kinematic design considerations for minimally invasive surgical robots: an overview. Int. J. Med. Robot., 2012, vol. 8, no. 2, pp. 127–145, doi: https://doi.org/10.1002/rcs.453
[8] Filippov G.S., Glazunov V.A., Aleshin A.K. et al. Application prospects of parallel structure mechanisms in probe diagnostics of plasma flows. Lesnoy vestnik [Forestry Bulletin], 2019, vol. 23, no. 6, pp. 92–97, doi: https://doi.org/10.18698/2542-1468-2019-6-92-97 (in Russ.).
[9] Essomba T., Nguyen Vu L., Wu C. Optimization of a spherical decoupled mechanism for neuro-endoscopy based on experimental kinematic data. J. Mech., 2020, vol. 36, no. 1, pp. 133–147, doi: https://doi.org/10.1017/jmech.2019.33
[10] Freschi C., Ferrari V., Melfi F. et al. Technical review of the da Vinci surgical telemanipulator. Int. J. Med. Robot., 2013, vol. 9, no. 4, pp. 394–406, doi: https://doi.org/10.1002/rcs.1468
[11] Ohmura Y., Nakagawa M., Suzuki H. et al. Feasibility and usefulness of a joystick-guided robotic scope holder (soloassist) in laparoscopic surgery. Visc. Med., 2018, vol. 34, no. 1, pp. 37–44, doi: https://doi.org/10.1159/000485524
[12] Aleshin A.K., Antonov A.V., Glazunov V.A. et al. Prostranstvennyy mekhanizm s shestyu stepenyami svobody [Spatial mechanism with six degrees of freedom]. Patent RU 182946. Appl. 06.09.2018, publ. 22.06.2018. (In Russ.).
[13] Warren J.D., Adams J., Molle H. Arduino robotics. Apress, 2011. 628 p.
[14] Glazunov V.A., Lastochkin A.B., Levin S.V. et al. Prostranstvennyy mekhanizm s pyatyu stepenyami svobody [Spatial mechanism with five degrees of freedom]. Patent RU 146894 U1. Appl. 24.06.2014, publ. 20.10.2014. (In Russ.).
[15] Glazunov V.A., Glushkov P.S., Levin S.V. et al. Manipulyator [Manipulator]. Patent RU 170656. Appl. 20.06.2016, publ. 03.05.2017. (In Russ.).
[16] Rashoyan G.V., Shalyukhin K.A., Aleshin A.K. Analysis of kinematics of a parallel structure mechanism with kinematical decoupling properties. Vestnik nauchno-tekhnicheskogo razvitiya [Bulletin of Science and Technical Development], 2018, no. 1, pp. 32–37, doi: https://doi.org/10.18411/vntr2018-125-4 (in Russ.).