Simulation modeling of a manipulator for solving the trajectory planning problems
Authors: Lyuchev Ya.V., Klyuchikov A.V., Pchelintseva S.V. | Published: 13.02.2025 |
Published in issue: #2(779)/2025 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics and Robotic Systems | |
Keywords: inverse kinematics problem, trajectory simulation, Unity environment, simulation modeling, industrial manipulator |
The paper presents results of developing a software for visualizing the manipulator motion planning algorithms using the mathematical and simulation modeling tools. It considers the use of the Unity environment in developing the mathematical, physical and 3D simulation models of manipulators in the three-dimensional space. Besides, a possibility of calculating and visualizing the link motion trajectory is identified. Algorithms are compiled for software solution to the kinematic problems (direct and inverse) and manipulator planning methods to perform the technological and manipulative operations. Modules for visualizing the manipulator simulation model are implemented, including the manipulator, working scene and trajectory models. The results were tested on the example of the Kuka training manipulator. A full-scale experiment was conducted to compare the accuracy of computation in the developed software solutions.
EDN: EITKLQ, https://elibrary/eitklq
References
[1] Osipov I.A., Feoktistov D.A., Mikhaylov K.S. et al. [Application of virtual reality technologies in simulation modeling of mobile robots]. Problemy i perspektivy tsifrovizatsii agropromyshlennogo kompleksa. Mat. mezhd. nauch.-prakt. konf. [Problems and Prospects of Digitalisation of Agroindustrial Complex. Proc. Int. Sci.-Pract. Conf.]. Saratov, Vavilovskiy univ-t Publ., 2023, pp. 80–85. (In Russ.).
[2] Davletshin R.R., Drobina E.A. Modelling the gripper system of an industrial robot. Molodoy uchenyy [Young Scientist], 2019, no. 39, pp. 186–189. (In Russ.).
[3] Bykov N.V., Tovarnov M.S. [Simulation modelling of interaction of a mobile robot with the possibility of vertical movement with the environment]. ITMM-2018. Tomsk, 2018, pp. 300–305. (In Russ.).
[4] Tachkov A.A. Conceptual design of mobile robots using statistacal simulation. Ekstremalnaya robototekhnika [Extreme Robotics], 2016, no. 1, pp. 66–71. (In Russ.).
[5] Kuprin M.S., Osipov I.A., Fursin A.A. et al. Programmnyy paket imitatsionnogo modelirovaniya mobilnykh robotov na osnove dvizhka Unity [Software package of simulation modelling of mobile robots based on Unity engine]. Software reg. cert. no. 2023681185 RU. Appl. 26.09.2023, publ. 11.10.2023. (In Russ.).
[6] Klyuchikov A.V., Lyuchev Ya.V., Pchelintseva S.V. Programmnyy paket dlya imitatsionnogo modelirovaniya promyshlennykh robotov [Software package for simulation modelling of industrial robots]. Software reg. cert. no. 2024618442 RU. Appl. 27.03.2024, publ. 11.04.2024. (In Russ.).
[7] Kuprin M.S., Osipov I.A., Klyuchikov A.V. et al. Simulation modeling of mobile robotic complexes tool analysis according to physical laws (a review). Mekhatronika, avtomatizatsiya, upravlenie, 2023, vol. 24, no. 3, pp. 152–157, doi: https://doi.org/10.17587/mau.24.152-157 (in Russ.).
[8] Kuprin M.S., Klyuchikov A.V. Development of software modules for imitation of ilon and omni-wheel wheels in mobile robots. Matematicheskie metody v tekhnologiyakh i tekhnike [Mathematical Methods in Technologies and Technics], 2023, no. 4, pp. 77–80, doi: https://doi.org/10.52348/2712-8873_MMTT_2023_4_77 (in Russ.).
[9] Pchelintseva S.V. Convergence analysis method of process forming the disabled program trajectory deviation for manipulators with loop control. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik Saratov State Technical University], 2012, vol. 1, no. 2, pp. 402–409. (In Russ.).
[10] Gorelov V.A., Rubtsov I.V., Stadukhin A.A. Mobility analysis of robot systems by means of simulation. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020, no. 1, pp. 144–155, doi: https://doi.org/10.18522/2311-3103-2020-1-144-155 (in Russ.).
[11] Brekhov O.M., Zvonareva G.A., Ryabov V.V. Features of development and analysis of the simulation model of a multiprocessor computer system. Otkrytoe obrazovanie [Open Education], 2017, no. 3, pp. 48–56, doi: https://doi.org/10.21686/1818-4243-2017-3-48-56 (in Russ.).
[12] Rudkovskiy K.E., Korzun D.Zh. [Review of simulation modeling tools for movement and sensoring of wheeled mobile robots]. Tsifrovye tekhnologii v obrazovanii, nauke, obshchestve. Mat. XVII Vseros. nauch.-prakt. konf. [Digital Technologies in Education, Science, Society. Proc. XVII Russ. Sci.-Pract. Conf.]. Petrozavodsk, PetrGU Publ., 2023, pp. 84–85. (In Russ.).
[13] Galemov R.T., Masalskiy G.B. Planning the trajectory of the manipulator for a moving target. Kibernetika i programmirovanie [Cybernetics and programming], 2018, no. 2, pp. 9–28. (In Russ.).
[14] Kurochkin S.Yu., Tachkov A.A., Borisenkov E.I. Parametric synthesis of a multi-robot formation controller using the statistical simulation modelling. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2023, no. 1, pp. 146–154, doi: https://doi.org/10.18522/2311-3103-2023-1-146-154 (in Russ.).
[15] Kurochkin S.Yu., Tachkov A.A. Statistical simulation model of mobile robot formation movement taking into account the probabilistic characteristics of the communication and autonomous motion control systems. Ekstremalnaya robototekhnika [Extreme Robotics], 2022, no. 1, pp. 123–129. (In Russ.).
[16] Pchelintseva S.V. Razrabotka metodov matematicheskogo modelirovaniya kinematiki promyshlennykh manipulyatorov. Diss. kand. tekh. nauk [Development of methods of mathematical modelling of kinematics of industrial manipulators. Kand. tech. sci. diss.]. Saratov, SGTU Publ., 2005. 205 p. (In Russ.).
[17] Zueva S.V., Belyaev A.S. [Creation of 3d model of manipulator in Matlab Simulink]. Molodezh i sovremennye informatsionnye tekhnologii. Mezhd. nauch.-prakt. konf. Studentov, aspirantov i molodykh uchenykh [Youth and Modern Information Technologies. Int. Sci.-Pract. Conf. of Students, Post-Graduates and Young Scientists]. Tomsk, TPU, 2018, pp. 104–105. (In Russ.).
[18] Selezneva S.N. Polinomialnye predstavleniya diskretnykh funktsiy. Diss. dok. fiz.-mat. nauk [Polynomial representations of discrete functions. Doc. phys.-math. sci. diss.]. Moscow, MGU Publ., 2015. 257 p. (In Russ.).
[19] Nakamura T. Inverse kinematics of robot arm with unity. Japan, 2021. 89 p.
[20] Dr.-Ing. John Nassour. Forward kinematics: the denavit-hartenberg convention. In: Engineering Drawing, 2021, pp. 71–101.